


TIGHT BINDING BOOK



00
Q:

(<OU_164127 >







Osmania University

Call No-
;

Accession

Author

Title

%

':\; n t ^ c ^ ^ c ty * ,

This book should be returned on or before the date

last marked below.





Introductory
Acoustics

BY

GEORGE WALTER STEWART, PH.D., Sc.D. (Hon.)

Professor of Physics in the

University of Iowa

FOURTH I'RIXTIXG

NEW YORK
D. VAN NOSTRAND COMPANY, IMC.

250 FOURTH AVENUE



Copyright, 1932, 1933, by

D. VAN NOSTRAND COMPANY, INC.

All Rights Reserved

This book, or any parts thereof, may not

be reproduced in any form without

written permission from the publishers.

Special Edition, March 1932

Reynfar Edition Published, February 1933

Reprinted, February 1937, November 1940

June 1946

PRINTED IN THE U. S. A.



PREFACE

The accompanying text is an elementary treatise that under-

takes to consider the most comjpon phenomena in acoustics.

The content assumes no previdtfs preparation in physics, and

utilizes very few mathematical expressions. The limitation in

preparation of the student is^met by the insertion in the text of

the meaning of each technical term at the point where it is first

employed.
The absence of mathematics places an increased responsibility

upon language in presenting a clear analysis of all the phenomena.
Thus at many points the writing is necessarily condensed a(ffd

requires careful reading and re-reading. If the student will arf-

ticipate this type of effort he will have no serious difficulty. The

text does not survey the field rapidly as most elementary texts

do; it endeavors to study each topic with a thoroughness some-

what unexpected in a nonmathematical text. The student will

secure an acquaintance that will not only serve as a background
for any professional work involving acoustics, but also as valu-

able information that can be applied with success. As a matter

of fact, the viewpoint of the book is utility in the broadest sense,

including culture. The historical aspects of the subject are

largely omitted to make room for the detailed explanations and

analyses which are regarded as more important.

The number of students who need such a background and

yet who cannot afford the time for mathematical studies is rap-

idly increasing. While these have been prominently in the

author's mind, yet it is evident that the book can also be used

in intermediate courses in physics. Moreover, the amount of

acoustics in the usual elementary course in physics is so small

that students with and without previous preparation in elemen-

tary physics can use this text in the same class. But it is pref-

erable that the course be offered in the junior and senior years

rather than in the first year of college.
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Numerous demonstration experiments are suggested through-

out. These and others which can be introduced by the instructor

will prove invaluable.

The preparation of this text has extended over several years

in connection with classes consisting for the most part of students

specializing in music, speech and psychology. The attitude they

have shown toward acquiring a clear understanding of acoustics

and the pleasure they have derived from the nonmathematical

analyses of phenomena have supplied the incentive for the revi-

sions and final preparation of the manuscript.

I take pleasure in acknowledging my indebtedness to the

students who have from time to time given excellent criticism

and especially to my colleagues, Dr. P. G. Clapp, Director of

Music, who prepared Section 14.6, and Dr. C. J. Lapp, who has

critically examined the entire manuscript.

GEORGE WALTER STEWART
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To the Student who uses this Textboo\:

This textbook represents many years of

learning and experience on the part of the

author. It does not treat of an ephemeral

subject, but one which, since you are study-

ing it in college, you must feel will have a

use to you in your future life.
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later life wish to refer to specific details

and facts about the subject which this book

covers and which you may forget. How
better could you find this information than

in the textbook which you have studied from

cover to cover?

Retain it for your reference library. You
will use it many times in the future.
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CHAPTER I

SOUND WAVES

i.i. Acoustics. Interest in acoustics has been increasing

very rapidly during the past two decades. This has not occurred

because of advances made in musical instruments or in our use

of them. The instruments used today are largely the result of

a gradual development over many centuries. They are not the

result of scientific research, but of countless experiments in

making sounds in every possible manner. Only with the advent

of the telephone, radio loud speakers, the location of airplanes

and guns in war, and, in general, all forms of acoustic reproduc-

tion, reception and transmission, has scientific research made

invaluable contributions to development in acoustics. Today

money expended annually in research in this one field probably
exceeds half a million dollars. By the extension of scientific

knowledge and its application many results have been achieved

which would have been unattainable by a straightforward, ex-

perimental, trial and error method.

The applications have been made in a carefully reasoned

manner. This has usually required the aid of mathematics not

readily understood by the novice. The important fact for the

student to bear in mind is that progress has depended generally

not upon chance discoveries, but upon the most careful use of

reasoning power. When phenomena occur that appear inex-

plicable, we lack either the necessary information concerning

them, or the ability to reason correctly. For example, one might
surmise that if speech could be heard and understood from a

boat to shore, then speech should travel equally well in the re-

verse direction and should be heard just as easily from shore to

boat. This surmise arises from many common experiences in

calling to one another across open spaces or in a building, and

also from what might be termed "common sense." But these
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do not suffice to give the correct answer, for the transmission is

not the same in both directions. The wise way to proceed to an

understanding of the transmission of sound from boat to shore

is to study carefully what is actually involved in sound trans-

mission and in its alteration in any manner. Not until these are

clear in mind can the student consider with profit the transmission

of sound in this case. This relatively simple problem is illus-

trative of the necessary procedure. When a problem is compli-

cated, like the perfect reproduction of all sounds in a talking

picture, the attitude of mind should be precisely the same. A
careful understanding of all the phenomena involved, and logical

reasoning based thereon, are essential. In the reasoning, mathe-

matics is indispensable. The well-known processes that have

been demonstrated in mathematics are capable not only of saving
the human mind much complicated thought, but also of arriving

at correct conclusions even in cases where the mind alone could

not secure a solution. But, in the more simple situations in

acoustics, the mind can follow the reasoning without the use of

detailed mathematics. In such cases, it is all the more important
that the phenomena involved be understood with great clearness.

It is because of this fact that, in this text, emphasis will be placed

upon clear understanding. The language must be concise and

accurate and the reader because of this fact must follow no more

rapidly than he can comprehend. The meagerness of the mathe-

matics used is an advantage to the nonmathematical student,

but this omission thrusts upon him a correspondingly greater care

in understanding and reasoning. Every aspect considered in the

early part of the text will be used repeatedly. Therefore, full

comprehension must be obtained as one progresses. Acoustics

is a particularly satisfying branch of physics because one can

visualize the details of the phenomena which are concerned with

matter and with vibrations therein. Both of these seem con-

crete and understandable.

A clear knowledge of the elements of acoustics is becoming

increasingly important to any profession depending in any man-

ner upon acoustics. Civilization is becoming acoustically con-
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scious. It is studying the effects of noise. It is more critical of

all acoustic effects whether in speech, music or sound trans-

mission. The phonograph of yesterday will not be tolerated

today. Auditoriums, music halls, and studio rooms must possess

proper acoustic qualities. Acoustic effects satisfactory in the

past will not be permitted in the future. Acoustics is an old

subject, but with new responsibilities of everyday importance.

1.2. Waves. The most fundamental concept to be grasped

is the nature of sound itself. It is said to travel in waves. It

actually consists of waves in matter. Our long familiarity with

listening to all manner of sounds does not help us to understand

what is meant by a sound wave.

Everyone has witnessed the movement of water waves and

has recognized that they have a definite speed. A study of water

waves discloses that the water itself moves neither horizontally

forward with the velocity of the wave just mentioned, nor ver-

tically upward and downward. Yet these are the two move-

ments one recognizes visually as the most likely. It is found that

any particular portion of the water itself has an approximately
circular motion,* the plane of the circle being vertical and extend-

ing in the direction of motion of the wave. If this is the case,

then if one says the wave has a definite velocity forward he does

not refer to the water itself but rather to the physical shape of

the surface of the water. This shape certainly moves with a

horizontal velocity. To repeat, the term "wave" is used to refer

to the physical shape and not to any portion of the water itself.

But carry the ordinary use of the term "wave" a little further.

The Weather Bureau announces that a "cold wave" is coming.

Kveryone understands that he may expect the thermometer to

fall. It is a wave of low temperature and is said to be a wave

because this physical condition has a velocity in a definite direc-

tion across the country. No one thinks that there is an actual

movement of the same cold air from one point of the country to

*
Reference is made to the case of waves that are not too great in magnitude

and that are in deep water.
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another. It is the movement of a physical condition. In a

similar manner we may have a wave of atmospheric pressure.

It is noticed that in the above the word "wave" has acquired
a definite technical meaning. When once clearly understood, no

further difficulty is experienced. There are found numerous

physical changes that have at any point a directional velocity.

These alterations in physical relationships which are propagated

through the medium concerned with a definite velocity are usu-

ally referred to as "waves."

1.3. Properties of Waves. The water waves mentioned in

the previous section are caused by the action of gravity, and are

known as "gravity waves." They are quite different from what

are termed "ripple waves." The latter are caused by a curious

surface film of oriented molecules which acts very much like a

very thin stretched membrane. If the ripple waves are very
small the motion of the water is vertically upward and downward.

Thus very small waves and the large wind waves on water are

different in detail, for the active agency in the propagation of

the one is the tension or pull in the surface film, and the other,

the gravitational attraction of the earth. This section will not

be concerned with this difference, but rather with the use of

ripples as an illustration of the action of waves in certain respects.

Figure i.i
*

is an instantaneous photograph taken of a series of

such ripples on a water surface. They were produced by the con-

tinuous vibration of a thin wire projecting into the surface and

vibrating perpendicular to it. This vibrator is located at the

center of the concentric rings. The surface is brightly illumi-

nated and the photograph shows the condition of the surface at

one instant. There are two facts to be noticed. First, the waves

form concentric circles. Evidently the different parts of any one

wave have travelled equal radial distances in the same time inter-

val. That is, the different parts of the wave have had the same

speed of propagation at the same time. Is there any evidence

*The photographs shown in Figs, i.i to 1.6 are reproduced by the permission
of the publishers of "Einfuhrung in die Mechanik und Akustik" by R. W. Pohl,

Julius Springer, Berlin, 1930.
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the ripple waves seem more and more to have their origin in the

hole itself.

The spreading of the waves in Fig. 1.2 may be described as

bending around the edges of the hole. This would lead one to ex-

Fio. 1.3 FIG. 1.4

pect the effect shown in Fig. 1.5. Here the bending prevents the

obstacle from casting what might be termed a "sharp shadow."
What occurs at reflection is shown in Fig. 1.6. Here there

seems to be a new set of waves issuing from the reflector. These

FIG. 1.5 FIG. 1.6

are again circular, having a center as far behind the reflector as

is the original source of the waves in front. A more definite

understanding of the geometrical symmetry of the location of

these two centers can be obtained from the discussion of reflection

of acoustic waves in Section 2.1.
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These ripple waves, with the properties shown, are fairly

satisfactory as an analogy to sound waves. When one first be-

comes interested in the physics of acoustics he has need for some-

thing concrete, even though not strictly like sound waves. The

properties of the ripple waves as described are similar to those of

acoustic waves, but the nature of the waves themselves is entirely

different. But this need not prevent one from gaining a better

conception of acoustic waves by studying the properties of ripple

waves. We see that the waves are not propagated in fairly

straight
* lines like light, and that they are not reflected as would

be a tennis ball from a wall. Indeed, as shown by the action of

the small hole in a wall, they spread out in all directions from a

point on the wave. The properties of acoustic waves must be

appreciated at the outset, though of course the reader cannot

visualize in detail an acoustic wave. As he becomes more familiar

with the properties of such waves there will be less need for

analogies and visualization. The next section introduces the

reader to the nature of acoustic waves by the consideration of

waves travelling in but one direction. From the propagation in

one direction will be developed the phenomena occurring when

the observer is near the source, and the sound, travelling radially,

has a different direction of propagation at different points.

1.4. A " Wave " in a Helix. If one considers a helix of wire

suspended as shown in the accompanying Fig. 1.7 he sees that

it is possible to produce a wave. For if several of the turns at

one end are pressed together and then the inside turn is released,

the compressed part will at once expand, producing compression
ahead. Thus a "wave of compression" will travel along the

helix, having a velocity or speed of propagation f that depends

upon the dimensions of the wire and helix and the physical nature

of the material in the wire.

*
Light does not travel in lines that are exactly straight, but nearly so. For

our present purpose the straight line propagation of light will be assumed.

t "Velocity" is the distance passed over per unit of time. Technically it dif-

fers from "speed" in that the former includes the direction as well as the amounf
or magnitude.
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1.5. Different Aspects of a Wave. A wave of compression
has just been described. What other physical alterations are

there in this wave? First it is to be observed that a wave of

compression is always accompanied by a wave of rarefaction.

FIG. 1.7

For, consider a wave that has been established by giving the

helix a sudden compression at the end and then restoring that

end to its original position of rest. Suppose the compression to

be travelling along the helix, both ends of which are in their

original undisturbed positions. The actual length of the helix is

unaltered, although there is a portion where the helix is com-

pressed. If the total length is unaltered there must be a portion
where the helix is elongated. So a wave of compression in the

helix must be associated with a wave of rarefaction. These are

indeed two aspects of the same wave. Again, one can observe

in this experiment that the progress of the wave will cause any

given turn to oscillate or vibrate to and fro during the passage
of the wave at that point. This vibration is readily shown to the

eye by tying a bit of string at the bottom of one of the turns of

wire. Each and every point of the helix suffers a displacement
*

from its position at rest, and this displacement is first in one

direction and then in another. We may say that a wave of dis-

placement has travelled along the helix. In fact, it can be
* The word "displacement" is sufficiently defined by its use here. The amount

or magnitude of the displacement is the actual distance from its position of rest.
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shown * that a wave of displacement and a wave of compression
not only are, but must be, coexistent.

The fourth aspect of the helix wave is somewhat more ab-

stract. Velocity is the rate of movement in a given direction.

It is the distance covered per unit of time. As a turn of the helix

is displaced, it has a definite velocity in that direction. As the

wave of displacement passes, the helix experiences a velocity (not

constant or uniform) first in one direction and then in another.

We could consider this aspect of the wave and call it a wave of

impressed velocity. But one can see at a glance that the velocity

referred to is not the velocity of the wave, but of a given portion of

the helix. There is then a very definite distinction between the

velocity of the wave described in Section 1.4 and a wave of velocity

considered in this section. This is true of the helix and it is also

true of a sound wave.

As above shown, there are four different aspects of this wave

in a helix, compression, elongation, displacement and velocity.

There is an analogy in the acoustic wave in a gas. A gas resists

compression and will return to its former volume after compres-
sion (cf. automobile tire). So does the helix. A gas has inertia,

that is, time is required to set it in motion. This is true of the

helix. Indeed, these two qualities, which are called ''elasticity"

and "inertia," make possible the existence of a wave and its

movement at a definite speed. It is sufficient for the present

purpose to check up this thought with the helix. The wave of

compression moves forward because the compression at one point

exerts a force attempting to compress another point just in front.

Without elasticity this would not occur. Moreover, if the helix

were without inertia, any force would produce an effect instantly.

This would result in an infinite velocity of the wave. This is, of

course, not imaginable because we have never experienced any-

thing without inertia and yet with ability to exert a force. A

gas, having these two qualities, elasticity of compression and

inertia, will transmit a wave of compression with a definite veloc-

* The phrase "it can be shown" will be frequently used. It refers to a possible

demonstration but not one proposed for the student.
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ity of propagation. Such a wave is called an acoustic or sound

wave. For the purposes of this book, the wave will be so desig-

nated even if it cannot be detected by the human ear.

1.6. Gas as a Medium for Sound Waves. That substance

which transmits a sound wave is called a "medium" or means of

transmission. In the case of the helix the medium is a continu-

ous one, that is, the helix is a continuous piece of wire. Upon
closer examination the wire is found to be made of fragments of

crystals and in each of these fragments an orderly array of atoms,

separated from each other, but nevertheless exerting forces upon
one another. A force is required to compress or elongate such a

crystal in any way. But for our present purpose we will not

inquire as to what these individual atoms and crystals are doing.

We will not go further than to appreciate the four aspects of the

wave in the helix as previously described. In a similar manner

we will neglect any consideration of the molecular constitution of

a gas. The separation of these molecules is, on the average, very
much greater than the diameter of one of them. To add to the

detail, it should be stated that these molecules are moving to and

fro in every direction, these motions corresponding to the heat

the gas possesses. We are to be satisfied with the fact that the

gas has elasticity and inertia, just as if it were continuous, and

therefore it will act acoustically as an imagined continuous me-

dium. No reference will need to be made to the motions of the

individual molecules. Hereinafter when the phrase "a particle

of the medium" is used it is understood that this does not refer

to a molecule, but to a small portion, called a "particle," of the

medium imagined to be continuous. This substitution of imag-
ined continuity will be a great convenience^

1.7. Representation of a Sound Wave. A sound wave may
occur in a solid, a liquid or a gas. But in the last two, or fluids,

the wave takes only the form of a wave of condensation and rare-

faction, as already described. The discussion in this text is lim-

ited practically to that kind of a wave. In -the case of most

vibratory bodies producing aerial sound waves, such as a vibrating
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string or a vibrating air column in a wind musical instrument,

the waves of compression and rarefaction produced in the air

and reaching the ear follow one another in succession, but with

the pressure
* of the air at any point changing with time in an

interesting manner. One may graph a series of such waves of

changing pressures as in Fig. 1.8. Here the changing value of

the pressure at a point O is represented by distances above and

below the horizontal line, each positive and negative value being

respectively an excess and a shortage of pressure when compared
with the mean pressure. Figure 1.8 as drawn actually represents

me ELAPSED

FIG. 1.8

a type of variation with time that has been found to be the sim-

plest in every respect. This variation may be that of a quantity

like pressure, but it also may be one of displacement from a mean

position. It is, in fact, approximately the variation in displace-

ment with time possessed by a vibrating pendulum. On first

thought one would scarcely refer to the motion of a pendulum
as simple, for its velocity changes constantly as it swings from

its mean to its extreme positions. It might seem that a simpler

motion would be one of uniform speed everywhere except at the

ends of the arc where the pendulum could be stopped suddenly.

But this is not the case, because two entirely different kinds of

motion are assumed, one a uniform velocity and another an

abruptly changing velocity. Being so different they could not

be simultaneously described in a simple way. But with the pen-

dulum the velocity changes progressively in a manner that ptr

mits a relatively simple specification. In its most condensed

* "Pressure" in a gas technically means the force per unit area which the gas

would exert upon any containing wall.
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form this statement is entirely mathematical. But a visual de-

scription can be obtained by observing certain actual motions.

The three driving wheels on >ne side of a steam locomotive are

connected and driven by a "side or parallel rod which in turn is

attached to the piston. At each wheel the side rod bears upon
a crank pin which is made a part of the wheel itself. Assume

that these wheels are being driven by the side rod, but that they
are slipping on the track without any forward motion of the

engine. Let the observer, who is standing alongside, fix his atten-

tion upon the pin on the wheel. It spins about in a circular

motion. Suppose, however, that the observer were standing at

a distance of perhaps fifty feet from the engine and yet alongside

the track. Suppose also that although he is standing practically

in the plane of the revolving driving wheel, he is yet able to see

the moving end of the side rod or the crank pin itself. He will

observe now not a circular motion of the pin but one upward and

downward, with the entire movement appearing to occur in prac-

tically a straight line. In this apparent motion, the velocity of

the pin will vary, being maximum at the center of its vertical

path and zero at the extremities.

In the lecture room an experiment can be arranged as follows.

A horizontal beam of light issues from a lantern and falls perpen-

dicularly upon the screen. In its path is placed a bicycle wheel

rotating at constant speed about a vertical axis. The shadow of

the wheel rim or tire appears as a horizontal line. If a ball is

fastened above the wheel and at the rim, its shadow remains on

the screen during the rotation of the wheel. This shadow of the

ball moves to and fro, apparently in a horizontal straight line. As

will be surmised from an earlier statement this motion of the

shadow has the same kind of varying velocity as that of a pendu-
lum ball. The motion of the shadow is also a visual description

of a pendulum's motion. Moreover, this description is simple, for

it involves only a projection of a uniform motion in a circle, in

itself a very simple kind of motion. It is not surprising to learn

that when the motion of the shadow of the ball is described

mathematically it proves to be very simple indeed. But it is now
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necessary to revise the conditions of the experiment to conform

exactly with the mathematical statement mentioned. The light

falling on the ball must be parallel and not at all divergent. Then

the shadow has exactly the same dimensions as the wheel itself.

With this alteration it can now be said that the motion of the ball's

shadow is the kind of vibration or oscillation used throughout the

subject of acoustics. It is called "simple harmonic motion," and

is the simplest type known. Clearly one may similarly refer to a

simple harmonic variation of pressure, or any other quantity,

when its variation is like that of the displacement of the shadow of

the ball from a mean position. Now it happens that the simplest

vibration made by a tuning fork, by a piano string or by almost

any vibrating mechanism, is precisely of the same character. A

simple musical tone is a simple harmonic variation of pressure

such as indicated in Fig. 1.8. The usual musical tone consists

of a number of such simple tones. In the foregoing discussion

the motion of a pendulum was selected because it is familiar. It

must now be admitted that its motion is not strictly simple har-

monic, as is that of the shadow of the ball moving in a circle,

but approximates very closely to that condition. On the other

hand, a simple pure tone does consist of a simple harmonic varia-

tion of pressure as stated. Moreover, the variations of displace-

ment and particle velocity are also simple harmonic. This type

of variation or vibration is the kind with which we are particu-

larly concerned in acoustics. It is the building unit out of which

we will construct or describe complex tones.

It has just been stated that the time variation of the excess

pressure at a point in the medium can be represented graphically

by a continuous curve. This is a wave of pressure. One could
}

however, represent the same kind of a wave by considering a row

of little masses joined by an idealized weightless elastic cord as

in line A of Fig. 1.9. Let there be a compressional wave along

the cord similar to the one previously in the helix. Then line B
will represent what is happening at a certain instant to the row;

of masses.

As the wave travels, for example, from left to right (just as
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in the helix), the masses suffer a to andfro displacement along
this horizontal line. It is not possible, without confusion, to

represent the displacements of all these masses by drawing lines

in their actual directions, for these would all lie in the same straight

line, i.e., the direction of the cord. But the displacements can

be represented clearly by selecting a somewhat arbitrary method.

If, from the mean positions of the particles, lines proportional
but perpendicular to this actual displacement are drawn, a curve

through the ends of these lines may be said to represent the dis-

placements at that given instant. For example, the undisturbed

i\\\\\l///// 1 \\SM77

FIG. 1.9

A. An elastic cord with equidistant loading.

/?. A compressional wave in the cord.

C. A graph showing displacements from mean positions of these loads.

position of the small masses is shown in A. But if a longitudinal

wave is passing along this row of masses, then, at a chosen instant,

the position of these same masses may be indicated by the draw-

ing in B. If the actual horizontal displacement of a given mass,

as shown by a comparison of A and B, is represented by a vertical

line of the same length, perpendicular to the horizontal line in C,

but drawn from the undisturbed position as in A, and if this rep-

resentation is repeated for each particle, a curve drawn through
the ends of these lines may be regarded as representing the dis-

placements of the masses at the given instant. Displacements
to the left and right have been represented by displacements
down and up, respectively. This is an awkward method, because

the graph does not truly represent the direction of a displace-

ment. The graph in C nevertheless is said to represent the dis-

placements of the row of masses at a given instant.* The masses
* The solid circles on curve C represent the pseudo-positions of the masses,

the positions they would occupy had the displacement been up and down.
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and the elastic cord can now be replaced in imagination by a

gaseous medium, and Fig. 1.9 then gives a visualization of what

is transpiring in a compressional wave in a gas. The graph of

displacement is to be regarded as referring to the "particles" of

the medium. Curve C in Fig. 1.9 is then a representation of a

compressional or sound wave in a gas at any instant. If the

wave can be considered as moving from the left to the right

with a definite speed, one can prophesy just what will happen
to a given particle at a certain time.

In curve C, the vertical distance above the horizontal line

represents a displacement to the right, and the one below or

downward, a displacement to the left. Having in mind the cor-

respondence between the displacement to the right and the rep-

resentation drawn upward, it is observed that the displacements
in the neighborhood of the point "a" are directed toward that

point from both sides. Consequently "a" is a point of maximum

pressure at that instant. By similar reasoning
""

is observed

to be the point of minimum pressure at that instant. There are

two differences in the graphs in Figs. 1.8 and 1.9. Not only do

they refer to variations of different quantities, but the former

refers to the variation at a point as time elapses, while the latter

is an instantaneous picture, so to speak, of the condition of a

row of particles lying in the direction of the passage of the wave.

There is a certain similarity between Fig. 1.9 and a gravity wave

at the surface of water, though, in point of fact, the two are not

of the same shape. The "crest" of a water wave is not the same

shape as the "trough" and this is caused by the fact that the

motion of the water particles is circular.

1.8. Velocity. As already suggested by a statement in re-

gard to the helix, the velocity of a wave depends upon the medium

in which it is propagated. It is possible to prove that in a gas

the velocity of a sound wave is
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where p and p are the undisturbed pressure and density
* under

normal conditions, respectively, and k is a quantity depending

upon what are called the specific heats | of a gas. While it is

not proposed to examine the reasons for the form of this equation,

we can with some satisfaction notice that the equation is in

accord with the following considerations. A gas at high pressure

recovers from a compression quickly just as a stiff spring under

high pressure will, if released, return to its original position speed-

ily. It appears reasonable that a quick recovery would result

in a high velocity of the sound wave, and the formula (i.i) states

that v is proportional to Vp. But if one increases the mass of

the spring, the recovery cannot be so rapid, for with the same

force acting, the more massive the body the more slowly it can

be set in motion. The formula states that the greater the den-

sity, pressure remaining constant, the less the velocity. This

seems to be in accord with the variation just suggested.

A definition of "velocity of a sound wave" has been inferred.

It is the speed with which the physical alteration is propagated
in a definite direction. For example, if one represents a maxi-

mum displacement as at the point midway between b and a in

Fig. 1.9, and if the wave is moving to the right, the velocity is

the speed to the right which one must travel in order always to

be at this point of maximum displacement.

It is necessary to refer to the velocity of sound in liquids and

solids, for acoustic waves can be transmitted in any material.

Formula (i.i) applies to gases only. In liquids it is customary
to employ a slightly different form, as follows:

*-\~' vl-a)

Here is a symbol representing what is technically called the

volume elasticity of the medium. The reader will not be asked

to become familiar with this technical definition, but merely with
*
"Density" is the amount of the gas per ccm. Technically, it is measured

in mass per ccm. or grams per ccm.

t The exact definitions of "specific heats" need not concern the reader. Obvi-

ously heat enters into the situation, for when a gas is compressed it is heated thereby
and when expanded it is cooled.



VELOCITY

the statement that volume elasticity is a measure of the force

required to reduce the volume of the material by a fixed amount.

The value E must be obtained for each liquid, so that there is no

way in which one can compute the velocity in one liquid from

the knowledge of the velocity in another. In gases, there is a

slight variation in "," but this variation is known to be caused

by differences in the number of atoms in a molecule.

It is evident, however, that the nature of the vibrations in

gases and liquids is the same. In both, molecules can change

positions relative to one another freely, but in both there is an

opposition to compression or expansion. In a solid, the mole-

cules are close together and are fixed in relative positions. It

will resist compression and expansion and there is possible the

propagation of an acoustic wave in a given direction in the same

manner as in a gas or liquid. There is also in a solid resisting

Table I
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force to other kinds of motion such as a twist. Consequently,
the transmission of sound in solids is more complicated than that

in gases and liquids. In a wave of compression such as already

discussed, the vibrations are in the same direction as the progress

of the wave. Such vibrations are called technically "longitu-

dinal." At a later point reference will be made to waves other

than longitudinal that can be transmitted by a solid. Until

then, any mention of sound transmission in solids will refer only
to longitudinal waves.

The velocity of a sound wave is not wholly independent of

the nature of the wave, as is evidenced by experiments with ex-

plosions wherein velocities have been found considerably in excess

of the normal sound velocity. This is discussed in Section 1.9

but practically all sounds herein discussed travel with the same

velocity, called the normal velocity. The accompanying Table

I gives selected values.

1.9. A Variation of Velocity. It will be noticed in (i.i) that

we have \lk - If a gas is compressed so that p y the pressure, is
^ P

doubled, it is found by experiment that p is doubled also. Hence

the ratio of the two remains the same and consequently ( I . i ) states

that there is no alteration in the velocity of sound. The same

conclusion would be reached for an expansion of the gas. But this

constancy of the ratio, with pressure changing, is true only if the

temperature remains constant. For example, the temperature of

a gas may be increased by heating, keeping the volume and hence

the density constant and yet increasing the pressure. In fact,

the ratio between p and p is determined by the temperature.
Therefore the velocity of sound in a given gas depends only upon
the temperature and not at all upon the values of pressure and

density. It can be shown both experimentally and theoretically

that the velocity is proportional to the square root of the absolute*
*
Degrees on the absolute scale are very nearly the same size as on the Centi-

grade scale, but o C. is 273 absolute. Hence we generally add 273 to the reading
of the Centigrade scale to get the absolute temperature. In the Centigrade scale

water freezes at o and boils at 100', these temperatures being written o C. and
100 C.
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temperature. Hence at o C. for i C. rise in temperature the

velocity must be -^3 L t;mes tne velocity at o C., and at

/277 I /
/ C. it must be \>

/J
times the velocity at o C. or\

2?3
y

v t
=

0o \ i + = 0oV(i + .00366;), (1.3)
/ 3

where VQ is the velocity at o C. and v t at / C.

If a gas is under very great pressure, an exception must be

made to the statements in the preceding paragraph. While it

is true as stated that for a change of pressure under ordinary

conditions the velocity changes but a negligible amount, yet at

high pressure there is a marked change, especially at low tem-

perature. This change is not only one of magnitude but is some-

times positive and sometimes negative. At 103.5 C-> the

velocity with one hundred times the atmospheric pressure, or

"100 atmospheres," is, according to Koch (1908), 293.2 meters

per second, while with 150 atmospheres it is 346.9 and with 200

atmospheres it is 406.5 meters per second. Witkowski (1899)

found that, at the same temperature, the velocity decreased from

260 to 245 meters per second when the pressure was increased

from one to forty atmospheres.
The velocity in free air will change with humidity, because

at the same pressure the presence of water vapor will alter the

density. But this change is always less than one per cent if the

atmosphere is saturated with moisture at ordinary temperatures.

Yet another exception will need to be made to the statement

that the velocity of a wave in air depends only on the tempera-
ture. In the mathematical study of the passage of waves of

condensation and rarefaction in a fluid, it has been proved that

the velocity is independent of the magnitude of the displacements,
but only if these are small. It might be anticipated, therefore,

that waves of abnormally high velocities can be produced. This

has been repeatedly accomplished by explosions. Even the waves

near a large gun travel at a higher speed than the normal ones.
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A review of earlier experiments is described by Professor A. L.

Foley.* The speed of the waves produced by sparks has been

studied by Foley and reported in the article just cited. He
found that the speed close to the source depended upon the in-

tensity and that in the case where he was able to obtain twice

the normal velocity at a distance of 0.32 cm. from the source,

the velocity had decreased to the normal value at 2 cm. from

the source.

1.10. Frequency and Wave-Length. The frequency of a

sound vibration is usually the number of complete, or double,

vibrations of the particles of the medium per second. The fre-

quency is sometimes designated in
"
cycles/' Yet some manufac-

turers mark on their tuning forks the number of single vibrations.

The pitch of a musical sound is determined by the frequency.

The higher the frequency the higher the pitch. The wave-length

is the distance the sound travels during the time of one complete
vibration. Thus the distance travelled in one second would be

the length of one wave repeated that number of times which

corresponds to the frequency. Hence the relationship between

velocity, frequency and wave-length is as follows:
^ x

Velocity
= frequency X wave-length. (1-4)

In passing from one medium to another the frequency is con-

stant, for adjacent particles at the boundary of the two media

must vibrate together. But the velocity of the wave is not in

general the same in the two media. If the frequency is constant

but the velocity different, the wave-length must also be different.

1. 1 1. Doppler's Principle. Reference will now be made to

a common phenomenon. If the source is in motion in the me-

dium in a certain direction, then, though the frequency of the

source remains unchanged, the wave-length measured in the

medium will be altered. On the side of the source which is in

the direction of motion the wave-length will become shorter and

on the other side longer. To a stationary auditor, standing near

*
Foley, Physical Review, 16, p. 449 (1920).



QUESTIONS ai

the path of motion, the frequency at the approach of the source

will be greater than at the recession. This is a common experi-

ence with a train whistle or an automobile hornT It is not difficult

to see that frequency heard will depend upon the auditor's veloc-

ity relative to the medium also. Illustrations of both aspects are

left to the reader.

1. 12. Velocity of the " Particle " of the Medium. It is easy

to confuse the velocity of sound with the velocity of a particle

in the medium. The former is large, as has been shown in Table

i.i, but the latter is small. The reason is readily appreciated

if one will notice that the maximum displacement in a sound

wave is an exceedingly minute fraction of a millimeter. Even

though the particle oscillates several thousand times a second, it

can be shown that the velocity at its mean position is usually of

the order of a small fraction of a millimeter per second. Thus

these two velocities mentioned above differ not only in meaning
but enormously in magnitude. The velocity of the wave is not

the velocity of the particle.

QUESTIONS

1. Why is a "displacement" necessary in a "wave of condensa-
tion"?

2. Indicate in Fig. 1.9 the positions where the following conditions

exist:

(a) The displacement is a maximum to the right, to the left.

(b) The displacement is approximately the same for neighboring par-
ticles.

(c) The displacements differ the most widely for neighboring particles.

3. Show that the maximum pressure and maximum displacement
at a given point do not occur simultaneously in a sound wave.

4. An organ pipe changes its frequency with temperature because

(as hereinafter shown) its length (assumed to change inappreciably
with temperature) must remain one-fourth of the length of the wave.

What will be the change in frequency if the room is heated from
o C., where the frequency is 256 per second, to 20 C. ?

5. Will the change in velocity of a sound wave in air caused by a

change of temperature have any direct influence on the pitch of a piano
or violin? Explain.
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6. A water wave and a sound wave in the water travel horizon-

tally to the right. What difference can you point out in the vibra-

tions of the water in the two waves?

7. In what respect does the following expression seem misleading:
"Sound travels in waves"?

8. Assume in Fig. 1.8 that the wave is travelling to the right. If

you had an instantaneous picture (drawing) of the wave of pressure
in a row of particles, how would it differ from the drawing of Fig. 1.8?

Consider the drawing to represent the condition at the time indicated

by o in Fig. 1.8.

9. What is the difference between the velocity of a sound wave and
the velocity of a particle of the medium?

10. According to Eq. (i.i), what can produce a change in v if the

gas concerned is open to the atmosphere?
11. Both the p and p of the atmosphere change from time to time.

How would you determine the velocity at any one time if you knew
the velocity for at least one condition of pressure, density and tem-

perature?
(It is suggested that a review of Chapter I be made before pro-

ceeding with Chapter II since a clear understanding of these funda-

mental concepts is necessary for the comprehension of the remainder
of the text.)



CHAPTER II

REFLECTION AND ABSORPTION IN AUDITORIUMS

2.1. Reflection at a Plane Surface. Sound is not reflected

like light, or like a tennis ball. It is a wave of pressure and of

displacement. The purpose of this section is to describe what

occurs as a result of reflection and that without the use of any

analogy. Take a specific case. A source of sound is placed at

O, Fig. 2.1, in front of a wall, represented in cross section by a

line. It is desired to ascertain the effect of the wall upon the

incident sound. At the wall at a point between O and O', which

is the same distance from the wall on the other side, the sound

from O impinges upon the wall in a direction perpendicular
thereto. At no other point along the wall does

this perpendicularity exist. But a study of the

reflection of a sound wave must include what

occurs at all points of the wall. Obviously the

situation is quite complicated and hence the physi-
cal action at the wall is perhaps too difficult to

describe in detail. So the physicist seeks an in-

direct method, which, as will be found, permits % o' o.
him to describe the reflected wave without the

necessity of detailing the action of the reflection

over the entire wall. Let an imagined source, FIG. 2.1

O', like that at O, be placed on an extended line

drawn from O perpendicular to the wall, the distance of O and O'

from the wall being the same. By the method referred to, it will

be shown that the sound coming from O will be reflected from

the wall in such a manner as to produce a reflected wave precisely

like that which would have come from a similar source, placed
at O', if the wall were absent. This is a remarkably simple de-

scription of a complicated physical action. It is interesting and

instructive to follow the demonstration of its truth.
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Assume the sources and 0' as stated, but at first without the

wall. The waves emitted by and 0' are spherical. Select any

point P on the plane between and 0' and consider the sound

wave arriving from at the time it has a positive displacement.
But if 0' is a like source, then there is arriving simultaneously a

wave from O' with a positive displacement of the same magni-
tude. Since a positive displacement is in the direction of the

wave motion, the arrows as shown give the correct directions OP
and O'P of the displacements.

It is now necessary to consider how one can ascertain the

resulting displacement. A well-known method is to complete the

parallelogram with the two arrows representing the given dis-

placements as sides and to regard the diagonal as the resultant R.

This method, while apparently reasonable, is not easy to prove
in a few words, and hence will be assumed.

Applying the foregoing to the two equal displacements at the

point P, with the wall absent, the resulting displacement, /?, is

clearly in the plane which indicates the position of the wall when

present. Since the resultant is the displacement which actually

occurs, this means that there is a displacement in the plane
mentioned but none perpendicular to this plane. But P is any

point in the plane, and hence the condition of zero displacement

just stated is true everywhere. This is true at the instant chosen;

it will be true at any other instant since the two component dis-

placements are always equal and always make equal angles with

the plane. Inasmuch as the displacement and hence the motion

perpendicular to the plane at any point are always zero, we can

substitute a real motionless wall for the imaginary plane without

modifying the resulting wave motion on the right of that plane.

For with the wall present and assumed to be rigid, we can have

no motion perpendicular to the plane. This is precisely the same

condition stated above when the wall is absent and there are the

two like sources and 0*. Thus with the source 0, the rigid

wall and the reflected wave, the resulting condition on the right

is equivalent to the two sources and 0' without the wall.

Hence the reflected wave from the wall is the same as if it origi-
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nated at 0', which is called the image of 0. In Fig. 1 .6 was shown

the reflection of a series of ripple waves from a small plane re-

flector. Imagine this to be a part of an infinite plane as used in

Fig. 2.1. Then it is easily seen in Fig. 1.6 that the phantom
source of the reflected wave, or the image, is as far behind the

plane containing the reflector as the source is in front, and that

the two lie on a line perpendicular to that plane. The experiment
in Fig. 1.6 thus illustrates the discussion in this section.

It is evident from the preceding that it is not difficult to

obtain the result of reflection accurately, for the acoustician will

in his computations treat the effect of the wall as that of an image
at the point 0' equally distant from the plane. But being able

to compute the result is not the same as understanding precisely

what occurs at the reflecting plane itself. If one desires to con-

template the act of reflection, he should avoid thinking of the

displacements and consider rather a wave of pressure. Then it

is easily appreciated that, as a variation of pressure is created at

the wall, there will be a wave propagated therefrom.

2.2. Echo Reflecting from a Rough Surface. The echo as

commonly known is merely the sound from the "image" we have

described. In the production of echoes, the best effects are found

with plane surfaces of considerable dimensions. Nevertheless, a

rough surface may be used, such as the edge of a grove of trees.

But the indentations in the plane must be not large in compari-
son with the wave-length of the sound used, for then the argu-

ment which has been given in the preceding paragraphs, depend-

ing upon equality of phase at the surface, will not hold good.
For exact equality of phase demands that P, which is any point
in the plane, must be equidistant from and 0'. If the reflector

is really not a plane, then there can be no single image 0' that

always is at this prescribed distance from any point P.

The chief reason for the failure of an echo with a small surface

is virtually that the sound bends around it, leaving little to be

reflected. This phenomenon is called diffraction and will meet

our attention at a later point.
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2.3. Reverberation. If a source of sound is placed in a

room all the walls reflect and consequently make the magnitude
of the sound greater than if the walls were absent. The waves

are reflected not once but again and again and it becomes im-

possible to continue to trace the waves originally sent out from

the source. If a sustained sound is used, the resulting intensity
*

continues to increase and if there were no absorption of the sound

energy, there would be no limit to the intensity of sound in the

room. The absorption is quickly appreciated if the source is

discontinued. Then it is observed that the intensity does not

remain constant but decays gradually, evidencing an absorption
of energy. In a large empty auditorium the residue of sound

may continue for several seconds. The repeated reflection of

sound in a room is called "reverberation" and the "time of

reverberation" is the time required for the sound to become

inaudible after the source is discontinued. It should be observed

that reflection occurs from all the objects in the room as well as

from the walls, ceiling and floor.

2.4. Absorption. Usually by
"
absorption

"
of sound the

physicist means the transfer of acoustic energy to heat energy.

This is occasioned by the fact that if the adjacent portions of a

gas are compelled to slip past one another heat is developed.
This property of resistance to "slip" is termed "viscosity."

There is viscosity in solids and in liquids as well. In considering

the flow of fluids in a pipe it is customary to assume that the fluid

at the wall does not move but that the viscosity of the fluid itself

is the cause of the resistance to flow. It is internal friction.

Obviously a method of producing sound absorption in a gas is to

let the sound pass into a large number of small channels where

the slippage already mentioned will occur. Thus, because of its

physical construction, a heavy rug will produce absorption. Also,

it is to be noted that the small fibres of the material will be caused

to move slightly, though the displacement is a microscopic dis-

tance, and hence that there will be an additional absorption of

*"
Intensity" refers not to loudness but to the amount of energy per unit

volume in the sound wave.
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energy in these vibrations on account of the viscosity of the

material. These facts will receive attention in a later paragraph.

2.5. Reverberation in a Room. The appreciation of the

significance of the reverberation in a room and the methods of

diminishing it to a desired degree marked the beginning of the

scientific study of architectural acoustics. Professor Wallace C.

Sabine in 1895 began the study of the relation between rever-

beration and the properties of the materials present in the room.

He found in existence the widespread belief that the stringing of

wires greatly assisted in reducing reverberation. Indeed, at that

time, numerous auditoriums throughout the country were strung

each with several miles of wire. From a later section devoted

to resonance the reason for the inadequacy of wires can be ascer-

tained. Dr. Sabine found very quickly that the time of decay
of the sound to inaudibility was caused by absorption of all mate-

rials present. Reverberation is not wholly undesirable. Indeed,

as previously shown, it augments the intensity. But if the sound

of one syllable enunciated by a speaker lasts long enough, it will

interfere with a clear understanding of the succeeding syllable.

A similar undesirable confusion occurs with music.

The optimum (or most favorable) time of reverberation must

be determined by the auditor. An interesting experiment per-

formed by Dr. Sabine in regard to music rooms will illustrate the

point. When the New England Conservatory of Music was com-

pleted, the piano rooms were found quite unsatisfactory. An

appeal was made to Dr. Sabine, who agreed to undertake an

investigation. An important part of the problem was to ascer-

tain the opinion of musical experts in regard to the most desirable

time of reverberation. A committee consisting of the director

of the conservatory and four members of the faculty was asked

to assist in the experiments. The opinion of the committee was

ascertained by having each member pass judgment upon the

effect of piano music in the various rooms, the amount of absorb-

ing material present in each case being made variable by the

insertion and removal of theater cushions. It was found that
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the committee agreed remarkably well. In fact, to express it in

the terms of the unit used, they agreed as to the proper effect to

within one theater cushion. All the rooms were tested, and at a

later time Dr. Sabine actually measured the time of reverberation

with the same amount of absorbing material, making due allow-

ance for the number of persons originally present. The result

for the optimum time of reverberation for a piano is 1.08 or

practically i.i seconds. The rooms varied in size from one to

three times. The furniture differed considerably. Yet the fig-

ures for the various rooms agreed to within the error produced by
one cushion. One might conclude that the correct time of rever-

beration for small piano rooms is i.i seconds, and that a general

statement for piano music would require further experiments in

auditoriums of all sizes. But this conclusion must be modified

for, in general, the preference for an optimum time depends upon
the experience of the individual. Even orchestral directors differ

as to the best time of reverberation. Perhaps i.o second for

small auditoriums and 1.8 seconds for large auditoriums are ap-

proximately near the satisfactory figures.

If an effort is made to reduce the measurement of the time

of reverberation to a basis whereby the time can be computed in

advance of the construction of an auditorium, one must have a

standard for a perfect absorber. If sound from within passes

through an open window, very little is reflected and practically

all absorbed, that is, never returns. It would be possible then

to determine the absorbing quality of other materials in terms of

an open window of the same area. If a piece of hair felt, for

example, when placed against a plaster wall absorbs 50 per cent

of the amount of sound energy absorbed by an equal area of open

window, the "absorption coefficient" of hair felt is 0.50.

Assume a source of sound emitting acoustic energy at a fixed

rate. Before any reflections take place, the sound reaching an

auditor will have the same intensity as were the source and the

auditor not surrounded by walls and other materials. But the

waves strike the walls and other objects and these reflections mul-

tiply; the intensity continues to increase until the absorption
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occurs at the same rate as the emission. There are two factors

involved in the continuation of the sound after the emission is

discontinued. First, it is obvious that, since absorption occurs

at each reflection, the rate at which the sound is absorbed will

depend upon the number of reflections per second. Inasmuch

as the velocity of sound is fixed, this then means that the rate

depends upon the dimensions of the room, for the larger the

room, the less the number of reflections per second. Hence the

rate at which the sound is absorbed will decrease as the volume

of the room is increased. Or the time of reverberation will in-

crease with the volume of the room. Second, the rate of absorp-

tion will increase and the time of reverberation will decrease with

the absorption coefficients of the room. When a careful study
is made, it is found that the time of reverberation does depend

upon the volume, Vy
and also upon what is termed the "absorb-

ing power/' hereafter referred to as "0," which is the sum of all

products obtained by multiplying the area of each exposed mate-

rial by its absorption coefficient. Dr. W. C. Sabine determined

the time of reverberation experimentally with a certain source

and found that it was,

all dimensions *
being in meters.

His experiments showed that (2.1) was true in auditoriums

usually met in practice. A few years after this first work of Dr.

Sabine, a theoretical article by Dr. W. S. Franklin,t assuming
that sound can reach any part of the room with ease and assuming
a source similar to Sabine's, obtained the following:

,-2^. (...)
a

The agreement of the experimental equation (2.1), with the the-

* If all dimensions are in feet, then / =
*-

a

t Physical Review, 1903.
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Table II
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oretical result (2.2), is noteworthy. The reason a definitely de-

scribed source is necessary is that this time of reverberation could

not be independent of the strength of the source, or the rate at

which sound energy is emitted. It would really depend upon the

sound intensity existing in the room at the instant of the dis-

continuance of the emission. A standard initial intensity must

therefore be adopted and these two equations were obtained for

cases where the initial intensity is one million times that just

audible. (The nature of the ear is such that the intensity which

is a million times that just audible does not appear very loud.)

In considering the phenomenon of reverberation it should be

noticed that the intensity of sound builds up to its maximum value

in the reverse manner to its decay. The intensity increases until

the rate at which it is absorbed equals the rate of emission.

2.6. Modern Absorbing Materials. The significance of the

researches of Professor W. C. Sabine in 1895 an<^ f subsequent
contributions from him and others were but slowly appreciated

by architects and manufacturers. Prejudice was apparent and

many insisted that the excellence of auditorium acoustics was

really dependent upon the shape of the room. Given the proper
ratios of the dimensions the results were claimed to be the same.

Slowly and inevitably scientific facts, particularly the relation

between volume and absorbing power, spread and today active

interest in the subject is growing rapidly. Even Table II, or

the list from which it is taken, quite inadequately represents the

acoustic materials now available. The United States Bureau of

Standards is actively engaged in the measurement of absorption

coefficients and is making these values as well as general infor-

mation on the subject available to the public.*

2.7. Absorption Coefficients. Numerous absorption coeffi-

cients have been measured. A partial f list is shown in Table II.

* See circular of the Bureau of Standards No. 380, Jan. 4, 1930. Texts are

Acoustics of Buildings by Watson, Architectural Acoustics by V. O. Knudsen,
both John Wiley and Sons, 1930 and 1932 respectively, and Acoustics of Build-

ings by Davis and Kaye, Ball, London, 1927.
t These are taken from a list compiled by Dr. P. E. Sabine of the Riberbank

Laboratories and published in Acoustics by Stewart and Lindsay, D. Van Nostrand.
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Here the variation of the coefficients with frequency and with

arrangement of material are indicated.

Formulas (2.1) and (2.2) assume that in determining V and

a
y the meter shall be used as the unit of length. Hence the com-

puter must measure the volume in cubic meters and the areas of

each kind of exposed surface in square meters. Each area must

be multiplied by the corresponding coefficient of absorption and

all these products added. If the foot is used as the unit, then

the constant in (2.1) becomes .050, but the coefficients remain

the same. An illustration in an actual case follows:

Volume, 165, 200 cu. ft., therefore

, = 0.050 x 165,200 = 6 sec
1324.1

The time of reverberation in this auditorium was measured and

found to be 6.26 seconds.

2.8. Absorption Coefficients and Frequency. If the absorp-
tion occurs in the air pores or channels in the wall of a room,

then the absorption coefficient should change with frequency,

and the influence of viscosity can be shown to be greatest in

waves of short wave-length.f

* These values were taken from measurements by Professor W. C. Sabine and
were the only ones in existence at the time the computations were made.

\ Rayleigh, Theory of Sound, Vol. II, Chapter XIX.
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In Table II the variation of the absorption coefficient is not

always that of an increase with frequency. One concludes that

the effect of viscosity in the pores is not the only important
effect. In addition there may be viscosity in the material itself.

At any rate, the absorption coefficient can be determined only by

experiment.
That painting a surface affects its quality is to be anticipated.

The following
*
absorption Table III illustrates the effect of paint

and of moisture.

Table III

The column marked I contains values originally obtained

by Dr. W. C. Sabine for an unpainted 18" wall of hard brick

set in mortar; column two is for a surface of gypsum plaster

with a so-called "putty finish" taken about three months after

placing on an 18" brick wall and column three is for the same

surface a year afterward. The data of the last two columns were

obtained by Dr. P. E. Sabine. The change in the coefficient

with time is doubtless caused by the evaporation of moisture.

It is an interesting fact that a slight film of water or of any
substance of great density as compared with air, will prevent the

transmission of sounds. This is because the sound striking such

a surface experiences practically total reflection. Thus it occurs

that a thin film of water or vaseline will more effectually prevent
the transmission of sound than a surprising thickness of highly

absorbing hair felt. An interesting experiment may be performed

by the use of cotton in the ears. The great difference produced
* P. E. Sabine, Physical Review, 16, p. 514, 1920.
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by the additional use of a thin film of vaseline at the opening
can then be observed.

2.9. Other Effects in an Auditorium. In the foregoing there

has been discussed only reverberation. There are several other

effects of importance, for example, resonance and the variation

of intensity in various portions of the room. These will be men-

tioned in later paragraphs.

QUESTIONS
1. What is your reason for the statement on p. 24 that, inasmuch

as there is no motion perpendicular to the plane, a wall can be sub-

stituted therefor?

2. In the discussion of echo, it was stated that the "deviation from

a plane must not be large." Justify this statement in your own
words.

3. If the reflecting plane were corrugated, but still made up of

small plane surfaces, could you find an image by treating each surface

separately?

4. In a given channel, where would the velocity of the air particles

be the greatest, and where the least?

5. What is the relation between "reverberation" and "echo?"
6. Show, from a consideration of equation (2.1), that the time of

reverberation must be less in an auditorium without sidewalls.

7. Why would the desirable time of reverberation in an auditorium

depend upon the rapidity of speech?
8. Give one reason for the opinion that a fog does not have the

same effect as a film of water in preventing transmission.

9. What objection would there be to a room in which all walls

and objects are without absorption?
10. If a room has too much reverberation, what advice should be

given to a speaker?
11. Show by assuming the walls large, that there is a multitude of

images outside the walls of the room.

12. A piece of cheese cloth is known to stop the wind in a marked
manner. Why is it not effective in stopping the passage of sound?

13. What phenomena in architectural acoustics have you observed

that you can explain and that you cannot explain?



CHAPTER III

ACOUSTIC REFLECTORS

3.1. Nature of Interference. In Chapter I we discussed the

nature of sound waves of displacement, pressure and velocity.

The easiest manner in which to conceive of interference is by

regarding each wave as something that is propagated and that

produces at every point in its path its own displacement, pressure
and velocity. Its effect must be independent of every other

wave. If two sound waves cross, then the air particles at the

crossing must have values of displacement, pressure and velocity

that are resultants, or combinations of the two waves. Thus the

two displacements must be added, proper regard being given to

their directions as well as to their magnitudes. If two waves of

the same frequency are travelling in the same direction and if at

a point their displacements reach positive maxima at the same

instant the two vibrations are in the same phase. If one reaches

its positive maximum displacement and the other its negative

maximum displacement at the same instant, the waves are said

to be opposite in phase. At the point where two displacements
are equal and in the same direction, the resultant is twice either

displacement. Where the two are equal and in opposite direc-

tions, the resultant is zero. In both cases the phenomenon is

called "interference," for in both cases there is a combined effect

which interferes with the occurrence of either displacement.

As an illustration of interference assume two tuning forks

having almost the same frequency, one 255 and the other 256

vibrations per second. If the two are now held near the ear, the

sound swells and diminishes to zero once each second, giving the

phenomenon of "beats." This is explained in accord with the

preceding paragraph, for if one has 255 vibrations in the same

time as the other has 256 vibrations, then the latter gains one

vibration in one second. Assume that at the beginning of a

35
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certain second the vibrations of the two forks are in the same

phase. Then one-half a second later, they will be opposite in

phase. At the end of the first second they will be again in the

same phase. In the next second the same cycle will occur. Thus

during each second there occurs complete agreement in phase and

exact opposition in phase. In the former case displacements add

and in the latter they subtract. If these flisplacements are equal

in magnitude we have in the former case/owr
* times the intensity

of the sound from one fork and in the latter case no intensity at

all. This effect gives us the phenomena of "beats" to which

reference has been made.

3,2. Huyghens' Principle. There are many interesting phe-

nomena which are explicable only when one examines the inter-

ference of the sound waves. If sound travels with equal velocity

in all directions from a simple source of sound, we say that a

spherical wave results. But a sphere drawn about this source

has a significant uniqueness. At every point on this sphere the

vibration is simultaneously in the same phase, for since all points

are equally distant from the origin, the displacements must be the

same. To repeat, every point on this sphere is vibrating in the

same phase. Such a surface is called a "wave front/' Usually,

in acoustics, the direction of propagation of a sound wave is

perpendicular to the wave front; the exceptions of interest will

be subsequently noted and the reason therefor given, but for the

present purpose this direction of propagation will be assumed as

correct. With this understanding, it is easy to designate a wave

front and thus to determine the direction in which the wave is

propagated.

What is termed Huyghens' principle is that each point on any
wave front can be assumed to be the source of a hemispherical

wave and a future wave front be thereby determined. This is

illustrated effectively in Fig. 1.4. This principle is capable of a

*
Technically, the intensity, frequency constant, is proportional to the square

of the maximum displacement. See footnote to Section 2.3. This maximum value

is called the "displacement amplitude" or frequently the "amplitude."
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rigorous proof in acoustics, but here the principle will be assumed.

Consider the spherical wave a a in Fig. 3.1 and select a number of

points along this cross-section of the wave front. With each

point as a center draw a semi-circle, each

semi-circle having the same radius, equal to

the distance traversed by the waves in some

definite time. It is our task to ascertain the

new wave front. Inspection shows that at

the instant considered, at no other surface

than a'a' can all the vibrations be in the

same phase. For assume that the distance

between a a and a'a' is "n" wave-lengths.

Then draw any other curve you please from

the upper point a' to the lower point a'.

Remembering that only points an integral

number of wave-lengths apart in the radial pIO x

direction can be said to be in the same phase,

one sees that all points on this newly drawn curve cannot possibly
be in the same phase. Hence we cannot regard it as a wave front.

3.3. A " Beam " of Sound.* Assume we have a vibrating

area, aby in a plane wall as in Fig. 3.2. Assume that it is large

in comparison with a wave-length of the frequency actually used.

According to the previous paragraph we may now construct the

later wave front a'V'. It is readily seen that the hemispherical
waves from all points along ab

y travelling in the directions ac or

bd> would not have a surface in common, such as a'b'. In other

words, the hemispherical wavelets are not in agreement as to

phase in the directions ac or bd. This introduces interference and

if ab is as long as many wave-lengths, it can be seen that there is

destructive interference in these two directions. For, consider

the direction more nearly along the wall aA. At a point P the

displacement produced by the element of area at a will be equal
and opposite to that produced by the element of area one-half

* This can be illustrated by means of a highly pitched whistle placed inside

and at the closed end of a cylindrical tube. The open end may be considered

approximately a wave front.
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wave-length further away from P and between a and b. If ab

is comparatively large, as has been assumed, there will be as many
elements producing a displacement of one phase as there are ele-

A ments producing a displacement of op-

! posite phase. There is, then, approxi-

^*" mate annulment at P. What is true of

the waves in the direction aP is true of

any direction other than aa' or bV .

Thus if ab is comparatively large, it will

send out a "beam" of sound a'fr
r

, similar

to a beam of light sent out by a search-

4 .

light. Of course, the edge of this beam

I
^^^ is not sharp, for ab is not infinitely large

j

**
<

"**
Xt compared to a wave-length. This ex-

| planation of the condition which will

produce a beam of sound demands care-

pIG 2 ful study, for similar reasoning will sub-

sequently occur.

If at is now reduced in size, it is readily seen that the resulting

wave front becomes more and more like a hemisphere. When
ab is a point source, the wave is hemispherical.

As an application of the above reasoning, consider the direc-

tive property of a megaphone. It is known that the surface

containing the large opening is a wave front. If the opening is

large as in a large megaphone, the intensity produced is distinctly

greatest along the axis of the megaphone. There is never a

noticeably sharp beam of sound, and this is true because the

wave-lengths used are not sufficiently small.

3.4. Acoustic Plane Reflector. If reference is made to Figs.

1.2, 1.3 and 1.4, a series of ripples reflected from the wall will be

noticed. This section is a brief study of the influence of the size

of an area upon the reflection of acoustic waves therefrom. Con-

sider Fig. 2.1. is a source of sound in front of an infinite wall.

Its reflected wave can be regarded as coming from O'. If, how-

ever, we are dealing with a reflector of ordinary size, or a part of
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the wall, the reflected wave cannot be the same as that coming
from 0', in the absence of the reflector. It must be of less inten-

sity because it is jf less area. According to Section 2.1 each area

of the infinite wall will give a reflected wave which is just like

the wave which would come from 0' through this same area in

the absence of the wall. Consider this hypothetical wave from

the image 0' in Fig. 3.3, passing through the circular area at,

which has replaced the small reflec-

tor of the same size. This wave

will not remain in the conical volume

indicated by the dotted lines. Fig.

1.2 has already illustrated an analo- r

gous action in the case of ripple
"

waves. The section just preceding

considers the divergence from a geo-

metrical beam in the case of a plane

wave front. Obviously this diver-

gence will occur with a portion of a pIG ~ ~

spherical wave as well. Conse-

quently the wave front in ab will spread outside of the cone,

unless the distance across ab is long compared to a wave-

length. Moreover, the smaller ab the more the waves will

diverge from it as from a point. Certain conclusions are

now evident. Not only will a small reflector reflect a small

amount because of its size but a small reflector will scatter sound

in all directions, thus further greatly reducing the sound reflected

backward. This shows that, as the area of a small reflector is

increased, there is a much more rapid increase in its effectiveness.

Yet another influence should be mentioned. The reflected wave

will scatter not only in all directions on the same side as the

reflector, but also around the reflector itself.

3.5. Acoustic Parabolic Mirror. It is shown in optics that

light from a source located at a certain point within a parabolic
*

mirror called a
"
focus/' will be reflected from the mirror as a

* The parabolic mirror has a concave shape similar to that of an automobile

headlight. Its property of focussing is the important point and not its shape.
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parallel beam. This property of a parabolic mirror is utilized

in searchlights, the arc being placed at this focal point. Also

light from a distant source such as the sun will be brought to

this focus. During the war, acoustic parabolic reflectors were

tried as sound detectors, since the waves from a distant source

are approximately "parallel" and should be reflected to a focus.

Huge mirrors 12 feet in diameter were constructed. But it was

found that the concentration of sound was very poor. From our

preceding explanations it is evident that sound will be reflected

as will light only if the reflector is of dimensions very large in

comparison with the wave-length. Moreover, in light, the small-

ness of the focus is caused by interference. The intensity is

greatest where all the waves are in the same phase. The dis-

tances from likeness of phase to opposition in phase is of the same

order of magnitude as a wave-length as will later be shown when

discussing two waves travelling in opposite directions. Thus it

occurs that the focus of an acoustic mirror is not sharp and may
be regarded as of approximately the same diameter as a wave-

length. If we have a plane wave of frequency 100 d.v. (complete
or double vibrations per second) striking a 12 foot mirror, the

focus would have approximately the diameter of iioo -f- 100, or

ii feet. This can scarcely be said to be concentration. Even

with a note of high frequency, 1000 d.v., the diameter of the focus

would be i foot. With a highly pitched whistle, a parabolic

mirror and a sensitive flame, the concentration of sound may be

demonstrated.

Small parabolic mirrors are sometimes used behind public

speakers. They produce a noticeable difference but are not very

effective.

3.6. Interference in Auditoriums. Our discussion of inter-

ference of sound leads to an explanation of the well-known fact

that the intensity of sound is not equal at all parts of an audi-

torium. In an enclosed space there are innumerable reflections

and at any point the resultant intensity may be regarded as pro-

duced by many sources (images). But, ifsound waves may inter-
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fere so that displacements rather than sound intensities must be

added, the intensity of sound will not be the same throughout.

Dr. W. C. Sabine was the first to explore the variation of inten-

Fio. 3.4

sity throughout an auditorium. He has represented the varia-

tion in intensity in the manner that elevation of land is shown in

topographical maps. Fig. 3.4 is taken from his work. In a pre-
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vious chapter it was shown that the time of reverberation can be

computed in advance with considerable accuracy. Acousticians

have not yet learned a simple way to ascertain the presence of

"bad" spots or areas of small intensities. Moreover, the location

of such spots will vary with the frequency. It is possible, how-

ever, that a considerable area in an auditorium may be, in general,

a poor place for an auditor.

3.7. Selective Property of Reflectors. There is a curious

property of reflectors to which this section will be devoted.

Assume we have a vibrating disc, Fig. 3.5, and a point of obser-

vation at 0. For the sake of simplicity the emission from only

the right side of the disc will be considered. The effect at will

be due to the combined effects of all portions of the circular disc

AE. But the sound from A will reach the point later than the

sound from C. Then the phase of the former will not be exactly the

same as of the latter. If we increase the size of the disc, the

intensity at will increase unless the added area produces a dis-

placement at that nullifies a portion of the composite displace-

ment already produced. Just at what size this will occur can be

seen by the following discussion.

Suppose the circular area shown in cross section by ACE in

Fig. 3.5 be divided up into con-

centric circles, in such a manner

that the second circle adds an

area that is exactly equal to the

first one drawn about C, the

third also adds an area equal to

FIG. 3.5
the first and so forth. Then

each successive addition may be

thought of as contributing an equal amount to the resulting am-

plitude at 0. The whole area is vibrating in the same phase,

but the above areas are at constantly increasing distances from

0. Hence, the above successive contributions to a resultant

amplitude must gradually decrease in phase. It can be shown

that every additional area adds to the resulting amplitude until
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the phase reached is opposite to that of the wave from C, when a

decrease in the resultant begins. That the reader may have a

better picture of this effect, the following discussion is given.

If one adds two equal displacements as in Fig. 3.6, /?, the diag-

onal, is the resultant. The resultant

may be regarded as obtained by ad-

ding the two arrows, r\ and r^ end

to end and connecting the terminus

with the origin. This process may
be continued with a third arrow.

Suppose one adds a series of dis-

FIG. 3.6

to end and drawing

/

series

placements as in Fig. 3.7, each equal in magnitude but differing

in direction. The resultant is found by attaching the arrows end

Rt y
etc. It is noticed that the last dis-

placement that makes a con-

tribution to the length of R
y

efy is opposite
* to the initial

displacement Oa. This method

of adding displacements may
be justified by a consideration

of the nature of the variation

of a displacement having the

simple harmonic variation vis-

ualized in Section 1.7. There

such a variation was described

as corresponding to that of

the shadow of the displace-

ment of a ball on a screen,

the ball itself moving in a

circle in a plane containing the direction of the light. This

simple harmonic variation of displacement is the one treated in

this section and throughout the text. For, as stated in Section

1.7, a complex sound is made up of such units, and the effects

produced by each unit may be added to determine the result

*
According to Fig. 3.7, the last one to make a contribution to R is det but if

the areas are made smaller and smaller, de more and more nearly approaches the

condition of opposition in phase.

FIG. 3.7
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occurring with the complex sound. Consequently the treatment

of reflection for a displacement having one frequency may be

regarded as really of general application. Retaining the experi-

ment with the ball in mind, consider the addition of two displace-

ments differing in phase but represented on the same wheel.

Assume the second displacement to have the same amplitude
also indicated by the radius of the wheel. If the two displace-

ments are opposite in phase, their corresponding radii are drawn

in opposite directions. They have an angle between them of

1 80. (It is customary to use such an angle as expressing nu-

merically the difference of phase of the two displacements. Thus

a difference in phase may be designated as 30, 40 or 210, as

the case may be.) These two displacements, opposite in phase
and equal in amplitude, will give zero if added. The addition

can be made graphically by drawing the two radii in opposite

directions. Assume that the difference in phase is 90 instead

of 1 80. The two balls are placed at the rim with an angle of

90 between the radii. The sum of the displacements at any
instant can be found by adding the two values as found on the

shadow on the screen. The resulting displacement evidently has

a larger amplitude than the radius of the wheel. It can be shown

by geometry that there is a radial line, drawn from the center of

the wheel, which will have the value of this amplitude. More-

over, its shadow on the screen as the wheel rotates will always

give the resulting displacement produced by the two components
described. This radial line can be proved to be the diagonal of

the parallelogram having the two indicated radii as sides. This,

then, is the manner of securing a resulting amplitude, when two

displacements are in the same straight line. The amplitudes are

represented by arrows, the difference of phase by the included

angle, and the resultant amplitude by the diagonal. This is

precisely what was done in Fig. 3.6 and by an extension in Fig.

3.7. R is the resulting amplitude.
In Fig. 3.5 the displacements at from the successive areas

do not differ appreciably in amplitude or in direction if CO is

long compared with CA. But they do differ in phase. If the
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angle between the direction of two arrows in Fig. 3.6 represents

the phase difference and the equal lengths of the arrows, the am-

plitude, then R is the correct resultant amplitude. Figure 3.7

then states that, beginning at the center area ofthe vibrating disc in

Fig. 3.5, the displacements at produced by the successive areas

conspire to increase the resulting amplitude at that point until

opposition in phase is reached (180 in Fig. 3.7). Additional

areas decrease this amplitude at 0. A nullification will begin to

occur when the difference in the paths OC and OA will cause the

displacements from C and A to be opposite in phase. This

critical difference in the paths is one-half a wave-length. When
AC is increased beyond this critical distance the displacement at

will diminish. A more extended study shows that the resulting

intensity at 0, if the radius of the disc is gradually increased, will

diminish from the above described maximum to a minimum,
which is always greater than zero, will again increase and, in fact,

will have a series of maxima and minima of less and less promi-

nence, the intensity always remaining noticeably less than the

maximum intensity occurring with the radius such that AO-CO
is one-half a wave-length. This means that the action of the

diaphragm is selective. For a given frequency there is a certain

diameter which will give the maximum effect at 0. This is speci-

fied by the condition that AO-CO is one-half wave-length.

If this interesting effect occurs with a vibrating diaphragm,
it will of course occur with a reflecting surface as well, for the

latter may be considered as sending out a wave. The following

unpublished experiment was performed by the writer out of doors.

A circular screen S in Fig. 3.8 was placed about a cylindrical

tube, Ry from whose base a rubber tubing passed to the appara-

tus for measuring intensity. The tube R had the length which

caused it to resonate with the frequency of the source placed at

0. The observer compared the intensities in R and hence at P
when the size of the screen was altered. Three annular rings,

adding successive portions of the enlarged area of *$*,
were con-

structed. The dimensions were adjusted so that the sum of the

distances from P to the edge of the screen and from the edge to
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was as follows: (i) Without any of the rings this total distance

was less than one-half wave-length greater than OP; (2) with one

annular ring it was exactly one-half wave-length greater; and (3)

with the second and third annular rings it was more than one-

half wave-length greater than OP. The distance OS + SP is

p O

FIG. 3.8

regarded as a path of the sound wave, for the wave which is

reflected at S travels therefrom in all directions. As would be

expected from the preceding discussion, the greatest intensity

observed in R was with one annular ring or with the difference in

total distance one-half wave-length.

This selective property, namely, a maximum reflection for a

given frequency, is, at present, more of a curiosity than a utility.

Nevertheless, it sometimes occurs in echoes.

3.8. The Pinnae as Reflectors. The reflecting power of the

pinnae, or the auricles of the ear, is not of grave importance. As

already pointed out both the incident sound and the reflected

sound bend around small obstacles. In fact, the effect of an

obstacle does not begin to be very marked until its size is com-

parable to a wave-length. Thus it is seldom that one listens to

sounds of high enough frequency to permit the pinnae to be very
effective. If one places a source of sound of 10,000 d.v. first in

front and then behind the head, a marked difference in intensity

can be noted. The wave-length is, in this case, less than the
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diameter of the pinnae. Similar remarks may be made in regard

to the effect of cupping the hand at the ear. The reader may

readily try experiments with the tick of a watch, which contains

tones of high frequencies, and with ordinary sounds such as

speech.

3.9. Acoustic Horns as Reflectors. Contrary to the com-

mon view, a megaphone, used either to transmit or to receive,

owes its advantage in increasing the sound intensity not to a

reflection effect, such as would occur if the wall was silvered and

light was used instead of sound, but rather to a resonating prop-

erty which will be discussed in a later section. In fact, the dis-

cussion in this chapter shows that we cannot use the laws of light

reflection unless all surfaces are very large in comparison with a

wave-length. The directivity of a megaphone depends upon the

area of the large opening, for this area is a wave front. Whether

or not a good beam of sound is obtained may be determined by a

discussion similar to that in Section 3.3.

QUESTIONS
1. If two waves are travelling in the same direction, under what

condition are the two displacements at a given point in the same
direction at all times?

2. If two waves are travelling in the same direction, under what
condition can the displacement at one point be in phase, when simul-

taneously, at another point, they are opposite in phase?
3. In the case of a conical megaphone the text does not state

whether the wave front at the opening is a plane or a section of a

sphere. What would be the difference in effect if such two surfaces

did not differ in position by more than one inch, for example?
4. In Fig. 2.1, assume the wall were made up of many small planes

set in somewhat random orientations. Under what circumstances

would this not materially affect the location or sharpness of the image,
07 Could this construction, if made of polished metal surfaces of

an inch in diameter, prove a satisfactory mirror for light?

5. With a small reflector why does the amount reflected depend
upon the wave-length?

6. When a train or automobile rushes by small objects such as

tree trunks, telephone posts, bridge structures, are the sounds reflected

to the passenger similar to those one would hear were he standing
nearby on the ground, or what difference is noticed and why?
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7. Can a blind man by hearing tell anything concerning the nature

of the objects along the path upon which he is walking and why?
8. Assuming that clearness of enunciation depends upon the higher

frequencies in the complex sounds, which will a small reflector improve
the more, loudness or clearness of speech?

9. Why should the bad spots in an auditorium vary in position
with the frequency?

10. One listening to a speaker talking through a megaphone will

notice that there is a difference in the quality of voice caused by
changing the direction of the megaphone relative to an auditor. State

the difference that occurs and why.
11. If one talks through a megaphone rectangular in cross-section,

in which directions from the axis of the megaphone will the sound

spread the most easily?
12. Experiment with cupping the hands at the ears in order to

improve hearing and report the nature of the sounds when distinct

improvement was and was not made.

13. Is the presence of the head any acoustic advantage in increas-

ing the intensity at the ear?

14. What does the experiment illustrated by Fig. 3.8 show as to

whether or not sound is reflected like light?



CHAPTER IV

REFRACTION AND DIFFRACTION

4.1. Variations of Velocity in the Atmosphere. Equation

(i.i) shows the dependence of the velocity upon pressure, density

and the ratio of the specific heats of a gas. In equation (1.3),

however, we have an expression for the velocity ir> which neither

the pressure nor the density of a gas occurs. In the atmosphere,
which will here be assumed to have everywhere the same com-

position, there are changes in pressure, density and temperature.

But equation (1.3) states that in discussing the velocity of sound

in such a non-homogeneous medium at rest we need to consider

only those variations in velocity of sound that are caused by
variations in temperature. If there is a wind having a direction

parallel to the earth's surface, for example, obviously the velocity

of the sound wave is greater, relative to the earth, when the prop-

agation of the sound is in the direction of the wind and less when

the sound travels to the windward. In considering the propaga-
tion of sound in the atmosphere we have need, therefore, to take

careful account of both the temperature and of the wind.

4.2. Effect of Temperature. Equation (1.3) shows that the

higher the temperature of a gas, the greater the velocity of sound

therein. The influence of temperature may be studied by assum-

ing the case of a sound wave passing from one stratum at a tem-

perature / to another stratum at temperature /', /' > /, giving

velocities v' and v. This is done in Fig. 4.1. Here the horizontal

line represents the plane separating the two media. The initial

plane wave front is AB and the final wave front after what is

termed "refraction" is A'B'. The change of direction of propa-

gation occasioned by a change in the nature of the medium which

49
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affects the velocity of sound is called "refraction"
* This term

is also used in cases where there is a change in velocity even if

the direction of propagation remains unaltered. Such would be

the case if BE' were perpendicular to the boundary in Fig. 4.1.

The position at A'B' is obtained in the following manner. Since

the sound will travel the distance AA' in the same time that it

will travel the distance BB'
y the wave front must contain the

point B
1 and a point on the hemisphere about A with a radius

AA' . If it is now assumed that the resulting wave front is plane,

which a more extended discussion would justify, then A'B' is the

refracted wave front. It is thus seen that the direction of propa-

gation of the wave in the second medium, AA'
', is perpendicular

to the wave front, A'B'.

This effect of temperature produces an interesting result which

is experienced usually in the early morning hours. If the night

has been clear, the earth has been radiating heat rapidly and, in

the absence of wind, the atmospheric layer near the ground may
become cooler than that above. This is just the reverse of the

usual daytime condition when the heat from the earth causes the

lowest layer to have the highest temperature. When the layer

adjacent to the earth has been cooled until its temperature is

* There will also be a reflected wave in the first medium, but it is not discussed

at this point. The case of reflection (in gases) with perpendicular incidence is

discussed in Section 5.4. In general all the energy will not pass from the first to

the second medium.
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lower than the stratum above, the temperature in this lowest

region will increase gradually with elevation until a level is

reached where the temperature begins to decrease. At further

elevations the decrease continues indefinitely, so far as our pres-

ent acoustic interest is concerned. Within the layer of tempera-

ture increasing with elevation, we have sound refracted in a

manner similar to Fig. 4.1. In the discussion of this figure it

will be assumed that the transition in temperature occurs sud-

denly. It can be proved that in the case of a gradual temperature

variation we are justified in using the above conclusion qualita-

tively. It is therefore seen that the effect of this type of refrac-

tion is to bend the sound towards the earth. If the sound is

propagated in a direction more nearly horizontal than shown in

Fig. 4.1, it may reach a horizontal direction and then be refracted

downward before reaching the upper limit of the stratum of tem-

perature increasing with elevation. If so, the sound will be

retained within the stratum very much as if transmitted between

two parallel walls, one of them the earth. This accounts for the

great distances at which sounds may be heard in the early morn-

ing hours. In a similar manner it can easily be shown that when

the stratum is in its usual daytime condition the influence of

temperature is to decrease the range.

Attention should be called to the fact that, in the foregoing

paragraph, there has been described a case of what is essentially
"
total reflection" caused by the phenomenon of refraction. But

one must not accept too literally the word "total." There will

be sound diffused to some extent out through the layer, irre-

spective of the direction of propagation of the transmitted sound.

The possibilities in Fig. 4.1 may be examined more closely. Sup-

pose the temperature of the upper medium be gradually increased.

At each increase AA' becomes longer while AE 1 and BB' will

remain unchanged. Thus A'B 1
will change its position and the

direction of propagation AA
1
will become more nearly horizontal.

As the temperature is further increased, causing v' to become

greater, AA' will approach the length AB'. When AA' equals
the length AB f

the direction of AA' becomes horizontal. This
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condition means that the wave no longer enters the second me-

dium but skims the surface between the two. If the temperature
is now further increased the sound will be reflected at the bound-

ary. The reader must not think such a reflection is impossible

though we do not commonly have such large temperature differ-

ences as would be required for the angle of incidence used in

Fig. 4.1. Instead of requiring the temperature of the upper
medium to be raised, one may change the angle at which the

direction of propagation of the wave meets the boundary. As

this direction becomes more nearly parallel to the boundary the

refracted wave also approaches coincidence with the boundary
even more rapidly, then skims the surface and finally is totally

reflected. So it appears that even a small difference in velocity

in the two media may, if the grazing angle of approach is small

enough, produce total reflection. This is further discussed in

Section 5.11.

4.3. Effect of the Wind. Assume that in Fig. 4.2 the line

00' is the cross-section of a plane which separates two regions of

air, in the upper of which the medium is moving with a velocity

o'

relative to the earth of u* and in the lower with a velocity of #1,

#2 being greater than u\. Assume further that there is a plane

sound wave represented by the cross-section of the wave front,

AB
y which is moving from the lower into the upper region. If

the air everywhere were stationary, the wave front would move

from AE to A'E' in a certain time, say /. But simultaneously
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with this propagation each portion of the wave front will be

carried forward by the motion of the medium in which it is lo-

cated. At the expiration of the time, /, when the wave should

have reached A'B', it will actually be at A"B"
y
for the distances

A*A" = a/ and B'B" = u\t are the distances which the respec-

tive media have transported their sound waves in the same time.

Because of the fact that 2 is not equal to i, A"B" is not parallel

to AB and we discover that the wave front has changed its angle

with 00'. It is further easy to see that the direction of propaga-
tion from 00' is not perpendicular to A"B", or the wave front,

but is in the direction AA". We can conclude that in a gaseous

medium having convection currents, the direction of sound prop-

agation is not, in general, perpendicular to the wave front.

But suppose an observer were moving with a velocity #2 , that

is, with the upper medium. He would notice nothing unusual in

the upper medium. The direction of propagation relative to him

could be drawn normal to the wave front. Thus we see that this

peculiarity, the movement of the wave front not perpendicular
to itself, may be caused by the motion of the observer relative

to the medium, and thus not be strictly an effect of the medium
itself. But if the velocity of the medium varies from point to

point in any direction, this peculiar movement of the wave front

may exist and may be correctly attributable to the medium itself.

It is to be understood that the abrupt change of wind velocity

with elevation, as here supposed, cannot really occur, and that

refraction actually extends over a considerable depth in which

the wind velocity varies gradually.

A practical point naturally arises as to the direction of propa-

gation of sound as judged by an observer who judges wholly by

hearing. As pointed out in a later chapter, the sound appears
to come from a direction perpendicular to the wavefront. As will

appear, this is because equality of phase of vibration at the ears

is the deciding factor.

4.4. Speaking in the Wind. It is a simple step to the dis-

cussion of the influence of the wind upon the propagation of sound
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horizontally, and this is the case of out-of-doors speaking. In

the diagram of Fig. 4.3 assume the source of sound to be at S
and located in a wind having a velocity to the right that increases

with elevation above the ground, and assume the wave which

has proceeded from it

to be AB. Proceeding
as before, the lines AA'

y

CCr and DD' are drawn

as the distances that the

sound wave would travel

the time / if thein

8

FIG. 4-3

motion of the air were

nil. But the medium

has moved in this time,

/, a distance A*A" at the upper, C'C" at the center and zero or

a very small amount at the lower point. The considerable

variation in wind velocity that is here represented really exag-

gerates the actual case, but,

inasmuch as the wind veloc-

ity does increase with the

vertical height, the assump- c

tion made for the variation

will give us results that are

qualitatively correct. It is

seen that the wave has a

reached A"D' in the time /, FIG. 4.4

and is now a distorted spher-

ical wave. Moreover, the direction of propagation from A is not

AA' but AA" . In other words, the wave is bent or refracted

toward the earth. The result of such refraction is the reduction

of the spreading of the wave upward from the horizontal. The

effect, therefore, is that the speaker's voice, or any other sound

from S, is carried apparently along the earth. It is said his voice

carries better in the direction of the wind.

In Fig. 4.4 is illustrated the effect when the sound travels

against the wind. The reader can follow reasoning similar to the
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above without the necessity of its repetition here. The conclu-

sion is that the sound wave is refracted upward, thus making it

more difficult to be heard when speaking against the wind.

The wind may cause effects that at first thought seem curious.

For example, two persons may be attempting to communicate

in a high wind between shore and boat. They find that while

the individual leeward can hear and understand, the other to

windward can scarcely hear any sound whatever. In fact, sound

will pass "more readily" in one direction than in the opposite.

But if the observer to the leeward is elevated he will be able to

make the observer to the windward hear much better, for now,

so to speak, the sound may be refracted but will yet succeed in

reaching the hearer. Such would be the case with sound travel-

ling from the source in a somewhat downward direction. Ele-

vated church bells can thus be heard more distinctly at points

windward than if the bells are near the ground. The refraction

toward the ground of the sound travelling leeward is not so seri-

ous a matter, for, assuming no obstacles, reflection will occur

and the sound does not escape as in the case where the sound

travels to windward upward. Of course, the presence of obstacles

on the ground is an additional justification for the elevation of

bells and whistles.

The previous discussion in regard to the scattering or diffusion

of sound showed that in acoustics we rarely deal with a "beam"
of sound. Therefore it is incorrect to suppose that sound trans-

mitted to windward entirely leaves the ground. Likewise, it is

impossible for all the sound transmitted to leeward to be refracted

toward the ground. The effects as described are not complete.

4.5. Silence Areas. In view of the influence of both wind

and temperature upon sound refraction it is not surprising that

conditions may obtain wherein the noise of an explosion may be

distinctly heard in a distant place, and yet not heard at all at a

nearer position. This phenomenon has been frequently obseve(

As an illustration on October 28, 1922, 2,000 pounds
were fired in Holland. The noise was heard within a
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from twenty to seventy kilometers, the difference in different

directions being caused by the wind. No sound was heard be-

tween seventy and two hundred kilometers. But in a zone dis-

tant more than two hundred kilometers the sound of the explosion

was again audible, in fact, up to a distance of nine hundred

kilometers.

4.6. Refraction and Scattering of Airplane Noises. In lis-

tening to airplanes in flight one observes several acoustic phe-

nomena. The one most quickly noticed is that the sound from

the airplane is of an uneven character. During experiments
*

in connection with airplane detection and location the observers

noticed also that, with "poor listening" atmospheric conditions,

the sound from the airplane at the greatest hearing distance was

limited to the lowest frequencies in the emitted complex sound.

These frequencies were for these particular airplanes approxi-

mately 90, 1 80, 270, etc., and the most prominent component
was the one of lowest pitch. The sound from the same airplane

heard at the greatest possible distance under excellent night con-

ditions was distinctly different. The lowest frequencies just

named were not noticeable and the sharp crackling sounds of the

engine explosions with prominent components, probably of the

order of 1,000, were most distinctly in evidence. The difference

in the character of the sound in the two cases may be described

as the cutting off of the higher frequencies in the former and of

the lower frequencies in the latter. That there may be a more

rapid decay of intensity of the higher frequencies is readily under-

stood by a consideration of differences in wave-length. For the

irregularities in the planity of the strata, for example, would be

more effective in scattering, by reflection and refraction, the fre-

quencies having the shortest wave-lengths. The reader can dem-

onstrate this if he will make a drawing of a non-planar stratum

and consider the refraction of waves in detail. In general, the

irregularities of the atmosphere would effect more the shorter

wave-lengths.

* Sec Stewart, Phys. Rev., N.S., Vol. 14, No. 4, p. 376, 1919.
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The apparently better transmission for the higher frequencies

in the second instance is not to be explained by any influence

of the medium but rather by the characteristics of audition.

The sense of loudness for the different frequencies is not the same,

whether the intensities
* are measured in mechanical units or in

terms of the least audible intensity. It is the latter unit of meas-

urement that is of interest in the present case, for the nature of

the sound heard at a great distance from the source depends upon

audibility. A further explanation will be given in a discussion of

audition.

The other experimental fact worthy of record is the rapidity

with which the intensity falls off with distance in the atmosphere.
If sound energy given off by the engine occurs at a constant rate,

and if this energy spreads out in a spherical wave, then the amount

of energy per unit volume or the intensity would vary inversely

as the area of the expanding sphere. This means that the inten-

sity varies inversely as the square of the distance from the source.

In the experiments to which reference is here made, the observer

used an instrument that amplified the sound intensity one hun-

dred times. If the intensity of sound varied inversely as the

square of the distance from the source, then the observer should

hear an airplane at ten times the distance one could hear it with

the unaided ear. But on fair days, cumulus clouds forming,

airplanes at an elevation of one thousand yards could be heard

only twice as far with the instrument as with the unaided ear.

On days when the atmosphere was obviously more irregular, the

decay of intensity was much more rapid. Under good night

observing conditions with the airplane at an elevation of two

thousand yards the maximum distance of hearing was increased

to three times the distance possible with the unaided ear.

It thus appears that even when the atmosphere is favorable

to sound transmission there is sufficient irregularity to cause a

surprisingly rapid decay of sound from an elevated source.

4.7. Diffraction. The word diffraction is used when a

change of direction of propagation of sound is occasioned, not

*
By "intensity" is meant the energy per unit volume.
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by a difference in the medium itself but by the introduction of

obstacles or reflecting surfaces, causing the sound to bend or to

diffract around such objects. Diffraction has, as a matter of fact,

previously been mentioned in Sections 1.3 (with ripples) and 3.4,

but without being so designated. Sound will pass around the

corner of a building or over a partition or out of a window.

Everyone knows that the hearer need not see the source of the

sound. Obviously, diffraction is a very common and also an

important phenomenon. Without it we would be put to great

inconvenience in the conduct of our daily affairs. Diffraction of

sound must have played a significant role in self protection in the

evolution of the race.

From our earlier discussion in 3.4 in regard to the dependence
of the efficiency of reflectors upon the frequency of the sound

concerned, it can readily be judged that the longer the wave-

length the less the reflection and the greater the diffraction pro-

duced by an obstacle. It will be recognized also that our dis-

cussion of the reverberation in auditoriums assumed the free

penetration of all frequencies to every corner and recess in the

room. Fortunately the diffraction phenomenon is sufficiently

pronounced to make this assumption approximately true.

4.8. Diffraction about the Head of a Speaker. The diffrac-

tion about the head is an important consideration in two cases,

speaking or singing and audition. In the former the source is

at the head and in the latter it is removed at a distance. Results

concerning diffraction about the head will now be discussed.

The theoretical investigation, first begun by Lord Rayleigh and

later continued by others,* assumes the problem to be the inves-

tigation of the diffraction of sound about a rigid sphere. This

shape is necessary to make the mathematical solution possible.

The term "rigid" means simply that the sphere is not set in vi-

bration by the incident sound and hence that there is no absorp-

tion at any point on its surface. Let the circle in Fig. 4.5 repre-

*
Stewart, Physical Review, 33, 1911, 467-479.

Hartley and Fry, Bell System Technical Journal, I, 33, 1912.
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sent the cross-section of the rigid sphere, the point Ay
the source

of sound on the sphere, and P and P' positions of the observer,

the former on the same radial line as A and the latter on a radial

line making an angle 6 with OP. The inquiry is now made as

to the intensity of sound from A observed at any point P
1

'. A

glance at the problem shows that the solution is not easily ob-

tained by physical reasoning or by utilizing any of the facts

previously studied herein. The sound will spread out and will

FIG. 4.5

pass in every direction from A around the sphere. Moreover the

bending or diffraction will not cease when the sound has gone
half way around the sphere. There is no reason why the wave

should not continue to diffract around the sphere to the front.

In fact, the effect at any point may be considered to be caused

not only by the sound being diffracted around and close to the

sphere repeatedly, but also by the entire wave front passing the

sphere. The phenomenon seems hopelessly complicated. But

the mathematical solution is relatively simple in principle. The

method briefly stated is not without general interest. The equa-
tions describing the acoustic nature of the medium are set up.

Then it is assumed that the correct solution must "satisfy" these

equations and also the condition of no radial motion at all points
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of the sphere except at the source, A. The solution can then be

obtained.

In Fig. 4.6 are shown curves representing the results computed
from the theory and expressed in the form of the ratio of intensity

at any point P
f
in Fig. 4.5 to that at the fixed point, P, the dis-

tance OP being equal to OP' and the angle 8 lying between them.

The sphere is assumed 60 cm. in circumference. Let us consider

curve 2. Here P' is 19.1 meters from the center of the sphere.

As P' moves about the sphere in a plane the intensity at P9
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changes so that according to the curve 2, at 6 = 15, the ratio

is .97, at 45 it is .91, at 105 it is .76 and at 180 it is .858. Curve

i is for a very great distance from the sphere; curve 4, for a dis-

tance of 19.1 cm. These curves are for one frequency
*
only and

show the variation of intensity experienced by the observer at

the point P
r

as he travels in a circle about 0. One of the inter-

esting points is that the nearer the auditor to the speaker, the

more advantageous is a position directly in front of the latter.

* In Fig. 4.6 occurs the Greek letter "X," which represents "wave-length."
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Another interesting point is that there is a maximum * of inten-

sity immediately in front of the speaker and one also immediately

behind.

That the change in diffraction with frequency is marked is

shown by Fig. 4.7 wherein the range of three octaves is consid-

ered. The curves indicate that the higher the frequency, the

more the advantage of the front position. It will subsequently

be shown in Chapter IX that, in general, clearness of enunciation

depends more upon the high than upon the low frequencies in

the voice. The lower frequencies are more important in securing

volume and the higher frequencies in securing clearness of speech.

This fact should be given consideration in any use made of the

results of the theoretical investigation.

It is true that the head is not a sphere 60 cm. in circumference

as the above theory assumes, but it is safe to conclude that the

results of the investigation are applicable as an approximation
in any consideration of diffraction about the head.

4.9. Diffraction about the Head of an Auditor. On account

of an important theorem in acoustics called the "reciprocal"

theorem, the conclusions of the foregoing theory can be trans-

ferred to the case of diffraction about the head of an auditor.

In such a case the source is assumed at the point P' and the

relative intensities at A are calculated for various values of 6.

Figures 4.6 and 4.7 are correct for this case also. It can then be

said that the sound shadow or variation in intensity, produced

by the sphere at a distance OP' with a source on the sphere, is

the same as the shadow at points on the sphere produced by the

source at P'. The term "shadow" is permissible, for since in

optics a shadow is a definite variation in light caused by an ob-

ject, so in acoustics we may*speak of the variation of sound inten-

sity produced by an obstacle as a "sound shadow." From the

above mentioned curves we may reach the following conclusions:

i. When listening to a distant sound of low frequency, say
* A "maximum" intensity occurs at a point if at all neighboring points the

intensity is less. But here the graph refers only to a variation in the angle 6.
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less than 200, there is but little to be gained by turning the head.

(Here assume, for simplicity, that there is but one ear, but further

examination shows the conclusion correct for binaural hearing.)

2. The closer the source the relatively more important be-

comes the position of the head.

3. The higher the frequency the relatively more important is

the position of the head.

105 120 135 ISO 165 180

FIG. 4.7

4. The shadow decreases with distance of source from the

obstacle.

5. With 6 at 1 80, A and P' are on opposite sides of the sphere.

The closer the source at P', or the less OP', the greater is the

shadow at A. This is indicative of the fact that an obstacle will

cast a greater shadow the closer it is placed to the source.

That obstacles do cast acoustic shadows can be demonstrated

by using the tick of a watch and passing it about the head while

one ear is closed, also in the lecture room by a highly pitched

whistle, a sensitive flame (Section 15.14) and a small obstacle.
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4.10. Change of Quality by Diffraction. From the above

discussion it is evident that the music of a band in a city street

will not have the same quality irrespective of the position of the

observer. The higher frequencies are reflected more easily and

are diffracted less easily than the lower frequencies. Conse-

quently, because of the adjacent buildings, positions may be

found where the high frequencies are relatively exaggerated or

diminished. For the same reason, the quality of any music can

be changed through the reflection from and diffraction about

obstacles. The term
"
quality

"
is here used in a physical sense.

4.11. Principle of Least Time. Sound does not always take

the shortest geometric path. It is one of the possible deductions

from Huyghens' principle, Section 3.2, that the time required for

sound to pass from one point to another is a minimum. That is,

sound will reach the ear from a source in the least time. Thus

the shell wave of a swift projectile passing overhead will reach

an observer on the ground from a certain point in the trajectory

determined by this condition of least time. In fact, it can be

shown that if u is the velocity of the projectile, if v is the velocity

of sound, the line drawn to the trajectory from the observer makes

with this path an angle 6 such that the "cosine" of 6 is equal to

v/u. By "cosine" is meant the ratio of the adjacent side to the

hypothenuse of a right angle triangle containing 6.

The more general statement of the principle described in this

section is that the time is either a maximum or a minimum.

But the latter is the usual case and consequently the phenomenon

usually bears the title given to the section.

4.12. Passage of Aerial Waves about the Earth. Krakatoa,

a volcanic island between Java and Sumatra, was in violent erup-

tion in 1883. On August 27th there was a culminating paroxysm
and from this issued a wave of condensation which travelled out

in all directions, passed about the earth and apparently again met

at the antipodes to Krakatoa. It was then reflected, travelling

back to the volcano, whence it returned in its original direction.
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The wave was detected by the change in the barometric pres-

sure. It was observed issuing four times from the region of the

volcano and three times returning. The actual velocity was of the

same order of magnitude as the velocity of a sound wave in air.

QUESTIONS
1. Draw two diagrams similar to Fig. 4.2, but assuming for one

that u\ is zero and for the other that u% is zero.

2. If the velocity of the wind, Fig. 4.2, varied not suddenly at

OO' but constantly with elevation, would there be refraction and why?
3. Assume that the velocity of the wind relative to the earth

increases with elevation; show by drawing what influence the wind
will have upon the direction of propagation and the wave front, if a

plane wave of sound with horizontal wave front is emitted at the sur-

face of the earth.

4. By extending the discussion in the text prove more in detail

the correctness of the statement that "the sound will be retained in

this stratum very much as if transmitted between two parallel walls."

5. Show that, when the temperature of the air is highest near the

earth, the influence of temperature is to decrease the distance at

which sounds may be heard.

6. Show by drawing the possibility of refraction of sound from a

source on the earth back to the earth again.

7. Explain why "irregularities in the planity of the strata would
be more effective in scattering the frequencies having the shortest

wave-lengths."
8. How does the quality of sound from an airplane change with

its passage? (A report on actual observation desired.)

9. Does the refraction caused by wind or temperature vary with

the frequency employed and why?
10. If the medium is moving with a uniform velocity relative to the

earth, what effect would this have upon the shape of a spherical wave
from a point source, as observed from a stationary point on the earth?

11. What is the justification for a reflector behind a speaker in

the open air, as compared with indoors, and what effect would it have
on the high and low frequencies?

12. Cite cases in your own experience where quality is modified

by diffraction.

13. As you stand on the street in a busy city, in general how does

the character of the noises from nearby sources compare with that

from distant sources and why?
14. Draw a diagram illustrating the effect of the elevation of

church bells and justify the statement concerning the transmission

windward.

15. Is it possible to determine from Fig. 4.2 the magnitude of the

exaggeration (in the drawing) of the wind effect?



CHAPTER V

PHASE CHANGE AT REFLECTION

5.1. Phase Change. The terms
"
same phase

"
and

"
op-

posite phase" were used in Sections 3.1, 3.2 and 3.7. The former

refers to two vibrations of the same frequency in which the posi-

tive maximum displacements occur simultaneously. But if one

vibration is one-half of a period behind the other, they are said

to be opposite in phase. But "phase," as in Section 3.7, is also

used to indicate any difference in simultaneity whatever. The
two vibrations are said to have a difference of phase or to be in

different phases. Usually in acoustics only abrupt changes of

phase occur and these are plus and minus half a complete vibra-

tion or a difference of phase of 180.* In this chapter will be

discussed "reflection with change of phase" and "reflection with-

out change of phase." The former refers to reflection wherein

there is a change of phase corresponding to half a period; and the

latter to a reflection without change of phase.

5.2. Reflection without Change of Phase. In Fig. 2.1, the

waves from O and 0' arriving at the point directly between these

sources are in the same phaseJ( yet the resulting displacement is

zero. By an extension of the reasoning involved, if instead of a

wave from O we have a wave front whose plane is parallel to the

wall, the resulting displacement everywhere at the wall surface

would be zero. This reflection can be simulated by removing
the wall and substituting a plane J wave coming from the left

that has (at the old position of theVail) the same phase as the

* The expression of phase in degrees is explained in Section 3.7.

fNote that, although the displacements are actually opposite one another,

yet in each case the relation of the direction of the displacement to the direction

of travel of its respective wave is the same. This relationship always determines

the phase.

J A "plane wave" has a wave front that is a plane.

6$
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original wave. The substituted wave is equivalent to the wave

reflected from the wall. Since the wave from the left has the

same phase at the wall position as the incident wave from the

right, the reflected wave must be considered as having that same

phase also. Such a reflection is called a reflection without change
of phase. This phenomenon can be illustrated by the helix of

Fig. 1.7. If a block of wood is placed at the end of the helix,

the arriving wave does not give a displacement at the end but

the combination of reflected and incident waves gives zero dis-

placement. But the condensation of the incident wave at the

block occurs simultaneously with the condensation of the reflected

wave, making a pressure variation at the reflecting surface.

Thus, when the reflected wave is in the same phase as the inci-

dent wave, displacements are actually in opposite directions, but

the two pressures are simultaneously positive or negative, mean-

ing greater or less than normal pressure.

This reflection without change of phase apparently occurs at

every boundary where the second medium may be said to have

relatively infinite inertia, i.e., may be considered to be rigid or

immovable. Thus such a boundary may be a wall of solid mate-

rial or it may be a liquid such as a body of water. It is true that

the inertia is not infinite and that there actually is a sound wave

of small intensity passing into the second medium, but we are

neglecting this wave in the claim that the displacement at the

boundary is zero.

5.3. Reflection with Change of Phase. The preceding sec-

tion dealt with a reflection without change of phase, one in which

the reflector was assumed to have infinite inertia. A case which

is just the reverse will now be considered. Figure 5.1 represents

an interface between a solid S and a gas G. If the sound wave

comes from the right to the left, the solid has enormous inertia

compared to the gas and the pressures in the gas are able to cause

only very small vibrations in the solid. Neglecting these for the

moment, it can be said that at the boundary we have total reflec-

tion, and this without change in phase as explained in the pre-
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vious paragraph. Assume, however, that the wave is passing

from left to right. It is then seen that the vibration in S is not

impeded by G, because the gas has such a relatively small inertia

and the vibration of S can occur approximately as if G were a

vacuum. If G were really a vacuum, of course no sound energy
could pass into it and there would be total reflection at the sur-

face of S. With G a gas, some energy passes into it but only a

small amount, for, as just stated, the vibration of S is approxi-

mately independent of the presence or absence of G. This can

be appreciated by comparing the mass per
unit volume in S with that in G. At the

surface the solid and the gas execute the

same vibrations, but the energy in a sound

wave depends not only upon the amplitude
of the vibrations but also upon the mass

in vibration; the greater the mass, the

greater is the energy in its vibration.

Since the density of the solid, ?, is at least

several thousand times the density of the

gas, and it cannot transmit to the gas a

greater amplitude than the solid possesses,

the energy of vibration in the latter must

be very much greater than that in the gas. It is reasonable,

then, to assert that but little energy is transmitted to the gas,

and that the reflection may be regarded as approximately total.

The relatively small inertia of G produces another condition.

It can be shown mathematically that the pressure amplitude in

G for a wave of given intensity would be very much smaller than

for a wave of the same intensity in S. One might surmise, then,

that with this practically total reflection the pressure amplitude
of the refracted wave in G would be relatively small, indeed, very
much smaller than that occurring in S with the incident wave

travelling to the right or the reflected wave travelling to the left.

But the excess pressure in G is at all times equal to the excess

pressure in S at the surface, or to the sum of the excess pressures

of the two waves in S at that point. Thus, these two pressure

FIG. 5.1
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waves in S are practically equal and opposite. Hence, there is

a reflection with a change of phase of pressure also.

It is interesting to compare the displacements. Since the

waves in S are travelling in opposite directions, an opposition in

phase causes the displacement amplitude at the surface to be

twice the displacement amplitude of either wave.

In the preceding section it seemed easier to determine the

nature of the reflection by the consideration of displacements.
In this section the pressure also is discussed. When a reflection

is with change or without change of phase of the displacements,
the same description must apply to pressures.

Reflection with change of phase may be illustrated by the

helix with a free end. Here the vibration completes its swing
and is reflected back a half period after its arrival.

5.4. Interesting Cases of Reflection in Gases. It is not in

general possible to determine the actual intensity of the reflected

wave by a descriptive discussion. Hence a mathematical study
must be made. The results of such a study in several cases will

now be given.

1. If the two media concerned are gaseous, the ratio of the

displacement amplitude of the reflected wave to that of the in-

cident wave, which meets the boundary perpendicularly, is

VPl V^ v vl

Ratio = -7= p or
; , (c.i)

VP1 + V^ v + vi
' '

where p is the density in grams per cu. cm. in the first medium and

Pi in the second medium. The corresponding velocities are v and

Vi. In the case of a wave from hydrogen to air, p = .00008837
and pi

=
.001276. Computation by (5.1) shows that the ampli-

tude of the reflected wave is about 0.58 of the amplitude of the

incident wave. In other words, the reflected energy is about

(0.58)
2 or (0.34) of the incident energy.*

2. If now we suppose the wave to be travelling in the opposite

direction, that is, from air to hydrogen, the above fraction is

negative, but of the same magnitude. This, the theory shows,
* It can be shown that the energy of a plane wave is proportional to the

square of the displacement amplitude, frequency constant.
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is to be interpreted to mean that now the displacements are oppo-
site in sign, or that this is reflection "with change of phase" It

is to be understood, then, that equation (5.1) will not only give

the correct magnitude but will also state whether the reflection

is with or without change of phase. From this equation we can

conclude that if reflection occurs with the wave travelling from

a more dense to a less dense gas, the reflection is with change in phase ,

but that if the propagation of the sound is from the rarer to the

denser gas, the reflection is without change of phase.

While the preceding discussion is accurate, it is not descrip-

tive. If one will consider Sections 5.2 and 5.3, he will observe

that the conclusions therein would lead to the anticipation of the

results just stated with gases. While one cannot extend the

reasoning of those sections to gases of different density, yet they

give a physical reason for the conclusions just stated concerning

gases. There is, however, one fact that still lies hidden. A re-

flection is either with or without change of phase. The change
must always be either o or 180. There are no intermediate

changes. It is to be observed, also, that in the broader state-

ments of this Section the earlier limitation of equality of inten-

sities of incident and reflected waves no longer holds.

3. If the difference in the two media is one of temperature,

there is reflection, but computation shows it to be slight. For

example, suppose the change in temperature to be from 18 C.

to 98 C. Then the velocities can be calculated by using equa-
tion (1.3). If these two values of velocity be substituted in the

latter part of equation (5.1), the ratio of the amplitude of the

reflected wave to the incident wave is found to be .07 or 7 per
cent. The reflection occurs with change of phase and the re-

flected energy is only (.07)
2 or .005 or one-half of one per cent

of the incident energy. Assume this conclusion applied to the

case of a large stream of hot air from a furnace entering a room.

It is seen that the reflection at perpendicular incidence from such

a column of hot air is very small indeed.

4. The effect of humidity may be considered by assuming
sound passing from dry to saturated air. The latter is lighter



70 PHASE CHANGE AT REFLECTION

by about one part in two hundred twenty. It can be shown by

(5.1) that the reflected intensity is only about one eight hundred

thousandth part of the incident intensity.

5.5. The Image in Reflection without Change of Phase.

Referring to Fig. 2.1, the reader is reminded that the image 0'

is in phase with 0. But reflection occurs without change ofphase.

This effect can produce a curious result. Imagine the source

in Fig. 2.1, with the image 0' in phase, to be brought gradually

closer to the wall, where reflection without change in phase occurs.

Then 0' must also approach the wall. When the distance be-

tween and 0' is very small compared to a wave length of the

frequency considered, they will act like two equal and like sources

indefinitely near each other. The displacement one produces at

any distant point (assuming the reality of 0' and the absence of

the wall) is equal to and in the same phase as the displacement

produced by the other. Hence the amplitude everywhere will

be twice that produced by alone. This means that if a source

is constant, it will, when placed very near a large reflecting

wall, double the amplitude and quadruple the intensity every-

where on its side of the wall. The total amount of energy in the

hemisphere may be compared with that in the sphere (for the

wave is spherical) when the wall is absent. The total energy in

the hemispherical wave is twice the total energy in the spherical

wave. Therefore the source of sound placed near the wall is

caused to emit sound energy at twice its previous rate. While this

discussion is correct, there is an assumption involved which is not

made clear; namely, that the source at remains "constant." *

The requirement of the constancy of the source limits the appli-

cation of the conclusion concerning the doubling of the emitted

energy, yet two points are made clear by the discussion. First,

if the source is constant, the energy emitted is not always the

same. Second, the surroundings may influence the amount of

energy emitted from a source of sound, though the motion of the

* A "constant" point source is one which injects and removes a fixed volume
of air. A telephone diaphragm is a constant source if its motion remains constant.
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source, such as a vibrating reed or a telephone diaphragm, may
remain the same.

5.6. The Image in Reflection with Change of Phase. From

the preceding section and by similar reasoning, one can readily

see that if the two sources are in opposite phase each will annul

the other's effect. But this is the case in reflection with change
in phase. Thus when reflection occurs with change in phase and

the source is near the surface the intensity of sound in the inci-

dent medium is greatly diminished by the reflection. This effect

came strikingly to the attention of the physicists at work on

submarine detection during the war. Since reflection in trans-

mission from water to air is with change in phase, it would cause

a diminution of intensity in the water in the case of any sub-

aqueous source. The detector is of course placed in the water

because even with this interference the intensity is much greater

there. The velocity of sound in water is about 4.3 times that

in air and hence the wave-lengths are correspondingly greater.

The reader can readily show that the effect of interference just

described is more pronounced at a given short distance of the

source from the surface than would be the case if the velocity

were that in air.

5.7. Reflection at a Change in Area of a Conduit. We have

discussed the fact that a change in the character of the medium

produces a reflected wave. But a change in the restrictions of

the medium may also produce a reflected wave. For example,
in Fig. 5.2, assume a conduit in which sound is being transmitted

from the left to the right, and that at P there is an abrupt change
in area of the conduit. There are two conditions at the point P
which are fulfilled. First, the excess pressure at the point P is

simultaneously the same for both parts of the junction, and

second, the total flow of gas (in the vibration) is the same in the

two branches. Strange as it may seem, the fulfillment of these

two conditions requires the reflection of a sound wave at the

junction. For the moment this reflected wave will be assumed.
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In the following section an explanation of its appearance will be

given.

It can be shown that if S is the area of the larger tube in

Fig. 5.2, and A that of the smaller one, the intensity of the re-

FIG. 5.2

fleeted wave divided by that of the incident one, or the percentage

reflection, is correctly computed by the fraction,

y/\ 2

Y
)

Thus, if the S is three times A
y
the amount reflected is 25 per cent.

Let the same total alteration now be made in a series of many
small steps instead of in one step as in Fig. 5.2. Then there will

be a reflected wave at each small change in area. These reflected

waves would not agree in phase. If there are many of them ex-

tending over a length long compared to a wave-length, then there

would be destructive interference among them and the resultant

reflected wave would be small. Thus it happens that if the

change in area is accomplished very gradually, extending over

many wave-lengths, the transmission is practically undiminished.

As a practical procedure, if reflection is to be avoided, it is essen-

tial either to maintain the area of a conduit constant or to make
the alteration gradually over a length of conduit containing a

number of wave-lengths. In accomplishing the gradual altera-
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tion in area, it is not necessary that the inside surface of the

conduit be without small abrupt changes in area. Thus a large

number of small abrupt changes well scattered throughout a dis-

tance long compared with the wave length will eliminate much

of the reflected flow of energy.

5,8. Cause of Reflection at a Junction. One is entirely

familiar with the reflection or rebounding of a tennis ball striking

a wall. Yet it returns somewhat differently than an indoor base-

ball or a ball of putty. This is a problem in mechanics and must

include such considerations as momentum and elasticity. It is

mentioned here to show that, after all, unless one is a student of

mechanics, he is not familiar with the details of even this simple

phenomenon with the tennis ball. Hence, in considering acoustic

reflection, the rebounding ball is of no assistance. Indeed, it is

actually misleading for reflection in the case of acoustics is a very

different matter. Here we are not dealing with an object, but

with a wave of changing physical condition. It must be recog-

nized that the cause of a reflection of a wave must rest in the

acoustic conditions at the reflecting surface. For example, con-

sider the reflection of a plane wave incident normally on a rigid

wall. In Section 5.2 it was shown that a plane wave will be re-

flected, and specifically because of the condition required of the

displacement at the wall. The resultant displacement at the

wall, which is rigid, is zero at all times. But this is not the case

in the incident wave, and consequently an incident wave only

will not satisfy this condition of zero displacement. That condi-

tion can be satisfied by an additional reflected wave with the

actual displacements of these two waves equal and opposite at

the wall. The existence of the reflected wave is thus shown to

be a necessity. It does not come from a vibrating surface, but

simply arises from the conditions at the wall. Of course in con-

sidering reflection it is simpler to have in mind the approaching

wave of pressure, which will produce a pressure at the wall, this

pressure causing a return wave. But the important considera-
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tion at the moment is that the reflection occurs because the con-

ditions there require an equal reflected wave.

With this explanation perhaps the reason for the reflection

of a wave at the point P in the conduit shown in Fig. 5.2 may be

understood. Let us first assume that there is one wave entering

from the left and one passing out toward the right. Assume the

conduit infinite in length so there is no return wave. Let it also

be assumed for the purposes of trial that there is only the one

wave present. It was stated in the previous section that one of

the conditions fulfilled at P is that there is but one value of pres-

sure. If, then, there is but one wave entering and passing

through the junction, it must retain its pressure amplitude un-

changed. But this cannot occur. For the wave at the right of

P is similar to the incident wave at the left of P except that it has

a larger wave front. The wave at the right of P must therefore

contain not only as much energy
* as the wave approaching from

the left but also an additional amount corresponding to the in-

crease in area. But the mere presence of a change of area could

not increase the flow of energy. That would be a violation of a

general principle called the "conservation of energy." Clearly

the assumption of but one wave is incorrect and some way must

be found to meet the condition of one pressure value at the point
P. As another trial assume that there is a reflected wave trav-

elling to the left from the junction. It is well to notice that one

cannot assume a second additional wave travelling to the right

of P for there would then be two waves travelling in the same

direction and these will be united becoming one wave. And it is

not possible to assume a third additional wave on the right of

the junction, travelling to the left, for this was eliminated by

assuming an infinite tube. But two waves in opposite directions

on each side of its boundary complete the possible assumptions
even without the assumption of an infinite tube on the right.

Hence, in the present case, the only additional wave possible to

*
It can be shown that the flow of energy per sq. cm. per sec. in a plane wave,

and also a spherical one, varies with the square of the amplitude of the excess

pressure.
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assume is a wave beginning at the area containing the point P
and passing to the left.

The problem is to determine if this assumed wave can meet

the condition of pressure at the junction. Assume this reflected

wave to occur and with change in phase. Then, as shown in

Section 5.3, the pressures in the incident and reflected waves are

opposite in sign. Since they are not of equal amplitudes there

is a residue of pressure amplitude, and this pressure may be

thought of as the source of the wave to the right. The assumed

reflected wave can meet the condition of pressure at the junction.
The excitation of the reflected wave and the fulfillment of the

condition of pressure are two aspects of the same phenomenon.
The fact that the wave has its origin without the vibration of a

solid body need not disturb the student if he realizes that that

is also the case when one whistles, when one plays the flute and

when the wind howls about the corner. Space has been devoted

to this discussion in order that the student may appreciate the

essential difference between reflections in acoustics and reflections

of a ball striking a wall.

5.9. Reflection at an Open End of a Pipe. Consider the

end of a pipe as in Fig. 5.3. At the point P we have the condition

that the conduit opens out into the unconfined air where the

pressure is normal. Obviously a wave passing to the right can-

FIG. 5.3

not cause the entire region outside at the end of the pipe to

experience as great changes in pressure as occurred in the wave

within the tube. The reflected wave at P must then reduce the

pressure at the opening, or it must furnish condensation for the

rarefaction of the incident wave. This is reflection with change
in phase, as we have previously seen. Another way of visualizing
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this result is as follows: at any point within the tube, displace a

short length of the air column. The pressure ahead is thereby

increased and resists the motion. If this experiment is tried at

the open end, the displaced air spreads readily out into the atmos-

phere. The open end acts like the free end of a helix. As in that

case, so here, the reflected wave increases the displacement and

reduces the pressure amplitude. It is reflection with change in

phase. One inherent difficulty in understanding why a reflection

takes place at an open end of a pipe is that such a phenomenon
seems at first thought not to be in accord with experience. A
reflection from a wall is to be expected, but that from an open
end is not so easy to anticipate. But, as will be shown in later

pages, the action in such wind instruments as the cornet, trumpet,

trombone and flute all depend upon the reflection of sound from

an open end. This reflection builds up the intensity on the in-

terior of these instruments and helps to make possible what is

later described as "resonance." Such a reflection is common in

experience.

There is considerable interest in the amount of reflection at

the open end of a tube and this has been theoretically determined,

but experimental data are lacking. If R is the radius of the tube

and if the ratio of R to the wave-length X is small, then the per-

centage of the wave travelling toward the open end dissipated

into the open air is computed by the fraction.

X2

R i

Thus if is ,
the amount dissipated is approximately 3 per

R i

cent. If is , the dissipation is approximately 19 per cent.

A statement should be added to the effect that the theoretical

investigation of the percentage dissipated assumes the open
end of the tube to have a plane infinite flange. Although this

is not in accord with Fig. 5.3 yet it is an approximation to the

simple tube.
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In Section 4.9 a certain reciprocal relation was mentioned.

This relation, when applied to the case above, states that when a

source of sound is placed in a tube with an open end P, the inten-

sity at a given outside point has the same value as would be

observed were the positions of source and point of observation

interchanged. That is, if but little sound leaves the tube, but

little would enter were the source on the exterior. In fact, a tube

with a small opening does not supply a good means of egress of

the sounds. It is likewise a poor receiver. These considerations

explain why the receptive qualities of a tube need to be improved

by flaring the open end.

5.10. Reflection at a Closed End of a Pipe. At the closed

end of a pipe the reflection occurs just as from a wall. It is re-

flection without change of phase.

5.1 1. Total Reflection at an Interface. Assume that we have

a sound wave of velocity v passing into a second medium and

therein having a greater velocity v'. As in Fig. 4.1, the direction

of the wave is changed and

the angle measured between

the perpendicular to the sur-

face and the direction of the

wave changes from to a

larger angle 0', as in Fig. 5.4.*

As explained in Section 4.2,

if now one increases the

"angle of incidence," 0, the

"angle of refraction," 0', in-

creases even more rapidly

until finally the refracted

wave just skims the surface, FIG. 5.4

i.e., 0' is 90. If now be

increased still further, there is no refracted wave, total reflection

ensues, and we have only the reflected wave, which is not drawn.

The minimum angle of incidence at which total reflection occurs

* The reflected wave is not shown in Fig. 54.
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is called the "critical angle." It is clear that the greater the

difference in velocities of the sound wave the smaller the angle 0,

at which total reflection begins. Thus, in passing from air into

water, this angle has been computed to be approximately 13.5.

In the case of a column of hot air such as that described in Sec-

tion 5.4, with the velocities having a ratio of 1.15, is approxi-

mately 60. This phenomenon of total reflection can be repro-

duced in the laboratory and may often occur in experience. But

if the refracted wave has a very small intensity as in the trans-

mission from air to water, its presence or absence is not noted

and the phenomenon of total reflection is not appreciated as such.

Again, if the angle 6 is large, the observer may think the sound is

coming directly from the source and fail to recognize the fact of

total reflection. Many reports have been made of apparent total

reflection caused by unusual meteorological conditions. It should

be observed that the refracted wave may cease to exist, but that

the reflected wave is always present.

5.12. Absorption along a Conduit. If a conduit has a rigid

non-absorbent wall obviously the wave passes along it without

being scattered. The wave front will remain plane as the wave

travels along the tube. But it must not be thought that the wall

of the tube plays no part in this transmission. Suppose it were

made of felt. Then the wave of pressure travelling along the tube

would cause motion of the air in the felt, producing absorption.

Indeed, this is a method used in preventing the sound passing

through a large ventilating flue. It is observed that although
the wave may be said to travel along the tube there is nevertheless

a divergence into the walls and a marked absorption.

QUESTIONS

1. If there are air currents in an auditorium, or if there are some-
what sharp variations in temperature, and if these conditions are not

constant, what effect would be had on the sound intensity at any
given point, assuming a constant sound source?

2. In a previous chapter was presented the phenomenon of ab-

sorption in the walls of a room. In the light of the present chapter,
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assuming the velocity of sound in the walls to be much greater than

in the air, what additional phenomenon would you note as occurring
at the walls in a room ?

3. Justify the statement, "That the effect of interference just
described is more pronounced at a given short distance of the source

from the surface than would be the case if the velocity were that in

air."

4. In discussing the effect of change of area in a conduit the state-

ment was made that "there would be destructive interference among
them," etc. Show why this interference occurs.

5. What is the one condition depending on the physical property
of the incident medium that determines the possibility of total reflec-

tion at an interface?

6. Which discussion is more general, that relating to Fig. (4.1) or

that relating to Fig. (5.4) ? Explain.

7. When like waves are travelling in opposite directions and their

pressures at a point are always equal, what is the relation between

the displacements? Justify the answer.

8. At a rigid boundary, the reflection occurs with or without

change of phase of displacements?

9. When the phrase "with change of phase" has been used in the

text, to what does it usually refer, pressure, velocity or displacement?
10. Can one hear a distant sound better if he listens at the surface

of an "infinite" wall, and why? (Assume that the ear detects pres-
sure and not displacement.)



CHAPTER VI

RESONANCE

6.1. General Phenomenon of Resonance. The term reso-

nance, when used in a broad sense, refers to the excitation of a

vibration in a body by a wave from another sound source. The

phenomenon appears most striking when the frequency of the

initial wave equals the frequency of the natural vibration of the

body caused to vibrate. For example, the air in an empty globu-

lar vessel may be made to speak loudly if its critical tone is

sounded in the same room. There is an impression that the phe-
nomenon of resonance provides a method of multiplying or am-

plifying the flow of energy after it has become sound energy. But

this is incorrect. Resonance accomplishes, in general, two not

altogether different results. When the resonator or the resonat-

ing body is at a distance from the original source such that the

vibration of the latter can to no appreciable extent be affected

.by the sound wave from the former, then the total emission of

sound from the original source is constant. In this instance the

resonator does not increase the flow of sound energy or the flow

of energy at the resonator. But there are cases to be discussed

later where the resonator affects the source, for example, sounds

from the vocal chords. In such a case there is a difference in the

intensity of sound given ofT by the source when the resonating

body is present. Hence one can say that resonance may increase

the flow of energy which is becoming available as sound but it

never can multiply the flow of sound energy already present. It

may succeed in storing up energy over a period of time and thus

make the final effect more powerful. This is true of a Helm-

holtz resonator described in Section 6.6. Or resonance may ac-

tually succeed in causing a source of sound such as a vibrating

reed> a vibrating string, or the vibrating vocal chords to emit

more sound energy than would be the case in the absence of reso-

80
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nance. In both cases the casual observer would claim that the

amount of sound energy was increased.

As will be seen, resonance is not only of great practical impor-
tance but also of intrinsic interest. In order that the term "reso-

nance" may be used with sufficient freedom, its meaning should

be considered to embrace mechanical vibrations of all kinds.

6.2. Plane Stationary Waves. There is a phenomenon, i.e.,

"stationary waves/' described in all elementary texts in acoustics.

The reader is reminded that no "wave" in the sense first used in

this text could remain stationary. That the use of the word

"stationary" is nevertheless appropriate will now be shown.

If two plane waves of the same amplitudes and frequencies

are sent over the same path, they will combine, and if in the same

phase they will give a wave of twice the amplitude of either. If

they are in opposite phases they will completely annul one an-

other. If, however, the waves are travelling in opposite direc-

tions over the same path, the resultant effect cannot be either of

those just specified. What occurs is not easy to visualize for the

waves are moving in opposite directions. One can understand the

result most quickly by an analogy. If one fastens horizontally

a long helical spring of small diameter at 0, and grasps it at the

end Ay he can, by moving the hand up and down, send a series

of transverse waves from A to 0. The waves sent out will be

reflected from and, if the vibration at A is maintained, the

resulting motion of the spring will be a combination of the two

waves. By properly adjusting the frequency of motion at A, the

resulting motion may be as in Fig. 6.1. The point A in the figure

is represented at rest because when this exact frequency is se-

cured, the motion of the hand is small in comparison with the

motion of the spring. In (i) the spring vibrates between the

position AaO and AbO. The reason an exact frequency must be

used at A is that one must produce an interference such that A
and will remain at rest, and yet such that the other points along

the spring will have motion. If now a more rapid and yet appro-

priate transverse vibration ofA is tried, (2) or (3) will be secured.
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The appearance of the vibration is similar to that in (i), save that

instead of one segment we have two and three respectively. Now
the resultant variations as shown in Fig. 6.1 could have been ob-

tained graphically instead of by experiment. The graphical

method would have been to superimpose two such drawings as in

x '9> causing one to move to the right and the other to the

(1)

Fio. 6.1

left with the same speed, and then adding the displacements rep-

resented by the two graphs at different instants. The graphical
method must of necessity give the same resultant at succeeding
instants as occurs with the spring in the actual experiment or as

shown in Fig. 6.1, for the graphical method is essentially like the

experiment itself. In the uppermost drawing in Fig. 6.1, the

curve a and the curve b of course represent the extreme positions

of the spring which will occur at times differing by half of that

required for a complete vibration. The dotted curves represent
the positions of the spring at selected other intermediate instants.

It has just been stated that Fig. 6.1 could have been obtained

by a graphical method as well as by experiment. Consider what

steps would need to be taken to determine the resultant of two

longitudinal waves of equal amplitude and frequency travelling

in opposite directions. First, two curves similar to Fig. 1.9 would
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be prepared, the vertical distances now representing longitudinal

displacements. Then these curves would be displaced in opposite

directions and at each selected instant the two displacements

everywhere added. The resulting curve for any instant would

indicate the resultant longitudinal displacement at every point.

But the preceding paragraph states that two such curves treated

in that manner will give Fig. 6.1. Hence one will obtain similar

final curves, but in one case having in mind transverse waves and

in the other longitudinal waves. Fig. 6.1 may thus be taken to

represent longitudinal waves as well as transverse waves. It will

then be assumed that the above three figures, (i), (2) and (3),

may in each case represent two longitudinal waves of like fre-

quency travelling in opposite directions, the vertical distances

being proportional to horizontal displacements.

It is now possible to discuss what is called a "stationary"
sound wave in air. It is evident that at points Ay cy d and 0,

there is approximately zero displacement. The medium is "sta-

tionary," at those points. But consider the direction of the dis-

placements in the neighborhood ofc and d. They are first toward

these points and then away from them. Hence the medium at

c and d experiences changes in pressure. The same is true of A
and O. When A and d in (3) are points of condensation, c and

are rarefactions, and vice versa. These points of no motion

are called "nodes." At the midpoint between A and c the me-

dium has the greatest displacement. This midpoint is called a

"loop." It has just been stated that when A is a condensation,

d is also. The distance from A to c, or c to d, or d to O is one-half

wave-length. Another interesting fact should not escape atten-

tion. In an ordinary progressive sound wave at any instant the

phase differs from point to point along the wave. In a stationary

wave the phase in one segment such as Ac is everywhere the same

the displacements of the particles in this segment differing only

in amplitude. But the phase in one segment is at the same in-

stant opposite to the phase in the adjacent segment. At a loop,

the adjacent particles have virtually the same displacements and

hence there is no change in condensation or pressure.



84 RESONANCE

6.3. Stationary Waves in a Cylindrical Pipe Closed at One
End. In the previous chapter it was shown that one can obtain

reflection with or without change of phase. In the case of per-

pendicular incidence upon a wall where the reflected wave passes

in a direction opposite to the incident wave, and where the ampli-
tudes of the two waves are equal the conditions for stationary

waves exist.

Consider a cylindrical pipe AB> Fig. 6.2, and assume that

plane waves 00' from a distant source of sound enter this pipe
and are reflected at B. If we assume that this reflected wave B

B

FIG. 6.2

to A does not suffer a reflection at //, but goes out into space, we

will have in AB the condition of two like waves travelling in

opposite direction or the condition for stationary waves. The

reflection at B will be without change of phase, there being no

displacement but variation of pressure only. B is therefore at a

displacement node. Furthermore, in the distance from B to A
there will be a node at each one-half wave-length, and between

them, or at one-fourth, three-fourths, five-fourths, etc., wave-

lengths, will appear a loop.

So far we have assumed no reflection at A. We now realize

that if it is possible to have a stationary wave in a pipe closed at

one end and open at the other, there may be a certain position

for Ay the open end of the pipe, which will not only pernit but

encourage the stationary wave to exist. The reflection at A of a

wave travelling to the right, here called /?i, is with a change of

phase, as shown in Section 5.9. /?j and its reflection at A called

#2, would, if the latter were equal to the former, form a station-
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ary wave with a loop at A. In fact they both conspire to this

end. This suggests that we consider the idealized pipe in Fig.

6.2 cut off so that A will be at a displacement loop. Then from

A to B is an odd number of quarter wave-lengths. Since the

reflection at B is without change of phase, then from A to B and

back to A would be equivalent to a path of twice this length and

the wave R\ when incident at A would be an odd number of half

wave-lengths (or twice an odd number of quarter wave-lengths)

ahead of the incoming wave at A . That is, it is out of phase with

the incident wave. Then R2 ,
because the reflection is with change

of phase, would be in phase with the incoming wave. Thus all

three waves at the point A would have the necessary phase rela-

tions to form a displacement loop. The only other condition to

be met for a stationary wave is that the combined amplitude of

/?2 and the incoming wave would equal the amplitude of R\. This

requires an entering wave that has a flow of energy precisely

equal to the difference between the corresponding values of R\

and /?2 . But this means that the flow of energy from the tube,

or the energy of R\ less that of /?2 >
is equal to the energy flowing

into the tube. This is clearly the condition for steady operation,

without any change in energy in the tube. With a steady source,

this is of course a possible condition. Hence cutting off the pipe

at one of the original loops places A at the correct point for a

possible stationary wave. Assume that we have a source and

cause a wave from it to enter a cylindrical tube of the length

above described. The stationary state will not be attained at

once, for a portion of the wave from B does not get out of the

pipe but is trapped by reflection at A . Consequently the acoustic

energy within the pipe will increase with time until the rate the

energy is dissipated is just equal to the rate of influx.

By this process the energy per unit volume within the pipe

region has been made much greater than if the pipe were absent.

But this energy has not been created by the pipe, but rather stored

over a period of time. It is to be observed that the agreement of

the reflected wave at A with the incoming wave indicates that

we are using the frequency which may be called a "natural" fre-
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quency of the pipe. It is the frequency with which the interior

would oscillate after the volume of air is given a sudden blow.

The phenomenon whereby we build up the intensity by using the

natural frequency is called "resonance," though the term is not

limited to such a case, as was stated at the beginning of this

chapter.

One of the simplest ways of showing such a case of resonance

is (see Fig. 6.4) by placing a vibrating tuning fork over a cylin-

drical jar in which the volume of air has been adjusted by the

water content, so that its frequency is the same as that of the

fork. The building up effect can be illustrated by varying the

length of time the fork remains at the opening of the resonator.

For short intervals, the longer the time, the greater the intensity.

6.4. Resonance. In any case of resonance the greatest effect

is obtained when the frequency of the stimulus is approximately

equal to the natural frequency of the vibrating body. But we

may also get an increased effect if the natural frequency is not

so nearly matched. The apparatus shown in the accompanying

drawing, Fig. 6.3, will illustrate this point. A disc, D, is sus-

pended by a spring. If the disc is "offcenter," or

if there is added to the disc along a radius a small

weight W> then in each revolution of the disc

there will be an impulse given the spring both

upward and downward. The experiment is per-

formed in the following manner. With its axis

held stationary, the disc is given a spin. The

axis is then released. At each revolution the disc

gives the spring the impulses already mentioned,

but these do not succeed in giving the spring a

marked oscillation until, as the angular velocity

decreases, the natural period of oscillation of the

combined spring and suspended weight is ap-

proached. Then the vertical oscillation becomes

evident, increasing until it is very vigorous at the agreement of

the frequency of rotation, the natural one. Then the oscillation

FIG. 6.3
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decreases to a small value. This shows that while the maximum
effect is obtained at a certain rotational frequency, the phenome-
non of resonance is apparent at adjacent frequencies also.

6.5. Emission of Sound Increased by Resonance. If an

experiment is performed with a cylindrical tube and a vibrating

tuning fork as in Fig. 6.4, it is found that when the air column

has for its natural frequency that of the fork, there occurs the

maximum emission of sound from the two. But since the cylin-

der cannot give out more or less energy than it receives, assuming
no dissipation within, the emission of energy from the cylinder

must be identical with the energy

flowing into it from the fork. Hence

we must conclude that when placed

above the resonating cylinder the

fork emits energy at a greater rate

than when alone. This illustrates

an important fact not usually under-

stood, namely, that resonance does

not create energy but may make pos-

sible a greater emission from the

source. This increase in output can

be explained by the phase relation-

ship of the velocity and pressure

at the source. An analogous case is setting a swing into vibration

by pushing when at the midpoint of the arc or at the maximum

velocity. The push and the velocity are in the same phase. It

may be remarked that cases may arise in acoustics where the

phase relationship is unfavorable rather than favorable. In such

an event, the emission of sound is made less by the presence of

the resonator near the source.

That in the preceding experiment a fork has been caused to

emit energy at a higher rate is based not only upon theory but

also upon experiment. The literature records experiments by

Koenig wherein a fork sounded about 90 seconds without a reso-

nator and 10 seconds in the presence of one. Obviously the

FIG. 6.4
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change that occurs depends upon the internal losses of energy in

the fork and upon the dimensions of the resonator. Thus one

should not expect the same relative change in all similar experi-

ments.

The phenomenon of causing a vibrating source to give off

energy more rapidly because of the presence'of resonance is shown

in practically all musical instruments including the vocal chords.

6.6. Resonance in a Volume Having an Orifice. If, instead

of a cylindrical pipe, we have a changing cross section, the theory

becomes very difficult. In fact, the method then utilized is only

an approximation. An illustration will be made of a volume

containing an orifice as in Fig. 6.5. Such a volume and orifice is

commonly called a "Helmholtz reson-

ator." If this volume is set into

vibration in its natural frequency, the

maximum particle velocity (see Sec-

tion 1.12) will occur at 0. V is so large

that the motion inside is slight. The

volume thus acts like a cushion or a

spring, the displacement at the orifice

causing a compression (or rarefaction)

throughout the interior. In the chan-
FIG. 6.5

nel at the orifice, however, the motion is relatively violent and the

mechanical forces arise not from condensation or rarefaction but

from the rapid acceleration or rate of change of velocity of the

mass of gas in the channel. In short, the predominant physical

factor in the V region is elasticity and in the region, intrtia.

We can therefore make this resonator analogous to a spring and
'

a weight as shown in Fig. 6.5 (b). In mechanics it is shown

that the frequency of vibration of such a spring is

where m is the mass of the weight, k is the so-called "constant"

or stiffness of the spring, n is the frequency and T is the period.
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In acoustics an analogous equation is derived, and is found to be

as follows:

i a [cn==
r
= ^W>

wherein a is the velocity of sound, c is called the "conductivity"
of the orifice and V is the volume of the chamber. All distances

are measured in cms. If the orifice is a circular hole in a thin

wall, the value of c is two times the radius. To illustrate the

formula, compare the case of a cylinder closed at one end (as in

Fig. 6.4) and having a natural fundamental frequency of 200

cycles, with that of a Helmholtz resonator, Fig. 6.5. Let the

cross sectional area of the cylinder be 10 cm. 2 Its length would

of necessity be one-fourth that of the wave-length of 200 cycles

or J (33200 -r- 200), or 41.5 cm. This is the necessary height
*

of the cylinder resonating with a frequency of 200. If a similar

cylinder, having a top closed, excepting a circular orifice 0.5 cm.

in diameter, is used as a resonator, it is readily shown by the

above formula that the height of this cylinder need be only 36
cm. in order to have 200 as a natural frequency.

If instead of a simple orifice for this Helmholtz resonator there

is provided a neck 2 cm. long and 0.5 cm. in diameter, the natural

frequency of 200 cycles will be obtained with a length of cylinder

of only 4.9 cm. The formula for conductivity of such a neck is

as follows:

where R is the radius and L the length of the neck. This is a

more general value of the "c" which may be used in the formula

for the frequency of a Helmholtz resonator.

The above example illustrates the possibility of securing low

natural frequencies but with relatively small volumes of air. An
illustration occurs also in the resonance of the human voice. A

* There is an "end correction" for every open pipe which is not considered in

this example. It is discussed in Section 6.9.
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deep bass note sung by a man would require a 10 foot open organ

pipe to produce.

6.7. Resonance of the Voice. In the case of the voice, the

resonance cavities are found in the larynx, pharynx, mouth and

nasal passages. To what extent the sphenoid sinuses and the

right and left antrums may enter into the resonance of the voice

is not known but is presumably small. The trachea below the

vocal chords is not in a position to emit sound successfully and

therefore its resonance is not of serious moment except as it may
influence the emission of energy from the source. The phrase

"throwing the voice" can scarcely refer to anything other than

the control of quality by modifying the resonance through changes
in the positions of the tongue and palate. This is the method

used in producing different vowel sounds. The preceding for-

mula assumes that the resonating cavity and the orifice are well

defined. So long as this is true the shape of the volume is not of

any significance* But in the mouth and pharynx cavities the

volumes and orifices are less clearly differentiated, and conse-

quently the shape of the cavities is a factor. The skill acquired

by the individual in varying the resonance properties of the

mouth, pharynx, nasal passages and larynx by variations in the

two first named is indeed remarkable.

6.8. Resonance in Cylindrical Pipes. In Section 6.3, it was

shown that stationary waves may exist in a pipe and that there

is a displacement loop at the open end and a displacement node

at the closed end. Assume a pipe of length L open at both ends.

The stationary waves formed in such a pipe must have a dis-

placement loop at each end. The lowest frequency must have

but one displacement node on the interior of the pipe. The suc-

cessive higher frequencies must have two, three, four, etc., nodes.

Thus it is simple to show that the lowest resonating or natural

frequency is one having a wave-length iL
y
for a wave-length is

the distance between alternate nodes or alternate loops. The
2

next highest frequency has a wave-length of L, and the next -.
%j
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The corresponding frequencies as multiples of the lowest or fun-

damental are i, 2, 3, 4, etc. Thus the natural frequencies of an

open pipe contain all integral multiples of the fundamental fre-

quency.
The case of a pipe closed at one end is somewhat different.

Here there is a node at the closed end and a loop at the other.

Consequently the lowest frequency has a wave-length of 4^, or

four times the length of the pipe. The higher frequencies have

wave-lengths of - L,
-

Z,,
-

Z,, etc. The natural frequencies of the
*j j /

pipe are thus, in terms of the fundamental, 1,3, 5, 7, etc. The
natural frequencies contain only odd integral multiples of the

fundamental frequency. The difference in natural frequencies

between an open pipe and a pipe closed at one end is of impor-
tance in wind instruments.

In the construction of the nodes and loops as in Fig. 6.1 (3),

one must bear in mind that such graphs do not pictorially repre-

sent the longitudinal stationary waves in the pipe. The dis-

placements are in the direction of the axis of the pipe, whereas

the displacements in the graph are perpendicular thereto.

6.9. End Correction of an Open Pipe. The relationship be-

tween the length of a pipe and the wave-length of a resonating

frequency as stated in the foregoing section is not exactly correct.

The pipe cannot be considered as ending, in an acoustical sense,

at the opening. The reason is that the wave at this point cannot

at once spread out into space. There is an additional equivalent

length which is definitely related to the "conductivity" men-

tioned in Section 6.6. One of the latest determinations of the

correct value for the additional length is that of Bate.* He states

that the correction for the open end of an open-organ flue-pipe

is 0.66 times the radius of the opening and that the value is inde-

pendent of the frequency, at least over the octave used in the

experiments. To the actual length of the pipe represented by L
in Section 6.6 must be added a length equal to 0.66 times the

radius of the opening.
* A. E. Bate, Philosophical Magazine 10, 65, 917, 1930.
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6.10. Resonance in Conical Megaphones. When the mega-

phone is used as a receiver, its resonating frequencies are not like

a cylindrical pipe, closed at one end, but, strangely enough, they

are the frequencies that would be obtained in a cylindrical pipe

having the same length but open at both ends. The fundamental

of the conical horn is therefore twice the fundamental of a cylin-

drical pipe of the same length closed at one end. The resonance

of a conical horn differs very much from that of a cylindrical

pipe. The latter will first be described. Fig. 6.6 shows the effect

IX-f 2Af 3Xf

FIG. 6.6

of resonance in a cylindrical pipe open at both ends, the source of

varying frequency being held near one end. The vertical height

in the graph indicates the intensity in the pipe, assuming the

source of varying frequency always to produce the same quanti-

tative changes in condensation and rarefaction at the opening.

The frequencies are indicated as being I, 2, 3, or 4 times the fun-

damental frequency, "/."

It is to be observed that the intensity is reduced practically

to zero, but more exactly to no amplification, in between each

resonance frequency, and that the intensity at the successive nat-

ural frequencies, 2, 3, 4, X/, decreases very rapidly. In point of

fact, the intensities decrease much more rapidly than is here

shown. The conical horn has a very different effect. Fig. 6.7

is a similar experimental graph by Stewart * for a conical horn.

*
Stewart, PAyjfVo/ Review, XVI, Oct. 1920, p. 313.
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(Actually, the experiments were performed with changing lengths,

frequency constant, but one can show by theory that the two

curves would be alike.) These figures show a striking difference

between resonance in a pipe open at both ends and a conical tube

closed at the vertex. With the latter, the intensity at resonance

does not decrease rapidly with increasing frequencies but the

maximum values are approximately equal. Moreover, the in-

tensity does not become small at intermediate frequencies. Sig-

nificantly, the minima increase with increasing frequencies. This

is the secret of the fact that a conical horn acting as a receiver

will amplify the emission of sound energy any frequency that is

high compared with its fundamental. Thus a long conical horn

will amplify all the tones existing in almost any sound and will

therefore give a fairly faithful reproduction of the quality or

timbre of the original sound. This is an important consideration

in the construction of trumpet receivers and reproducers.

In considering the action of the conical horn as a transmitter,

one should recall that a resonator can increase the emission of

energy from a given source. Moreover, as indicated in Section

3.9, the area of the large opening is a wave front and consequently

the horn can direct the sound or partially concentrate it in a

favored direction. The conical horn is successful as a transmitter

because of these two facts and because of the nature of its ampli-

fication as shown in Fig. 6.7.
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In connection with the above, it should be emphasized that

the megaphone does not ordinarily serve as a concentrator of

sound but as a resonator. Of course if the frequency becomes

very high the sound can be reflected somewhat as is light, but

sounds usually encountered should not be considered as capable

of concentration by a conical horn. The fallacy in the concen-

tration idea can be observed experimentally as follows. If one

holds a megaphone to the ear and listens to a sound having a fre-

quency half-way between
"

i
"
and "o," Fig. 6.7, he will find that

the intensity is practically the same with or without the mega-

phone.

6.1 1. Megaphones not Conical. The phonograph or loud

speaker horn is not conical but may be considered as made up of

fulcra of horns of different angles and lengths. Hence it will

have many resonating frequencies, but none are as marked as

those occurring in the conical horn. A very common shape is

that of the exponential horn. Here the diameter increases rap-

idly forming a flare. The harmonics can be computed. Mention

will be made in Chapter XV of the use of horns in loud speakers.

6.12. Stationary Waves in General. It must not be sup-

posed that in all stationary waves the adjacent nodes are one-

half wave-length apart. For example, in a conical horn closed

at one end, the fundamental vibration has a node at the closed

end and a loop at the open end, and, according to the discussion

of stationary waves in this chapter, the distance between this

node and loop should be one-quarter of a wave-length. Yet it

has just been stated that the horn length is one-half of the wave-

length of the fundamental frequency. The apparent contradic-

tion is explained by an incorrect inference from the preceding

discussion of stationary waves. The displacement nodes and

loops were formed by two plane waves of equal frequency and

amplitude travelling in opposite directions. Other more compli-

cated cases of nodes and loops will be later discussed. No general

statement can be made concerning the distance between a node
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and a loop. For such plane waves the distance between a dis-

placement node and loop is one quarter of a wave-length. This

is not the case in a conical horn for there the waves are spherical.

6.13. Resonance in Musical Instruments. In stringed in-

struments the effort is made to get the energy from the strings

to the atmosphere. On the violin this is done by the rocking of

the bridge which sets the body of the violin in motion. Thus the

surface exposed to the air is increased. Moreover, the air cham-

ber within has a multitude of natural frequencies which in turn

increase the emission of sound. This phenomenon of increase of

emission by resonance has already been discussed. The function

of the sounding board on the piano is similar to the body of the

violin as has been described. The application of the two prin-

ciples, (i) of increasing the area exposed and (2) of utilizing reso-

nance, may be made in the explanation of the effect with any

stringed instrument. A consideration of the possibility of reso-

nance in the solid body of the violin or of the sounding board is

omitted at this point but will be subsequently mentioned.

In wind instruments, the tone is produced through resonance.

The quality of sound produced when a wind instrument voices

any given fundamental depends upon the possible resonating fre-

quencies, the presence of these in the source of sound, and the

rate of emitted energy of each of these frequencies by the source.

A difference in resonating frequencies and in the sources of the

sound will merely be illustrated here, a more complete presenta-

tion being reserved for Chapter XV. The clarinet is a pipe

practically closed at one end by a reed. Its resonating frequen-

cies are therefore, i, 3, 5, etc., times that of the fundamental.

On the other hand, the oboe and the bassoon are conical tubes

closed at the vertex by a reed. The resonating frequencies are

i, 2, 3, 4, 5 times that of the fundamental.

6.14. Resonance in Buildings. There may be found reso-

nance frequencies in any small room or recess. The organ builder

is well aware of this difficulty and adjusts the intensity of his
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pipes to produce the correct proportion of intensity for the organ
in its final position.

QUESTIONS
1. Draw a curve representing a stationary wave at the time of

maximum displacement. Indicate the direction of the displacement,
the points of condensation and rarefaction.

2. Describe the conditions existing at one-fourth of a complete
vibration later than in the preceding question.

3. What is "stationary" in a so-called stationary wave?

4. What is peculiar about "phase" in a segment of a stationary
wave ?

5. What are three conditions necessary for a stationary wave such

as discussed in this chapter?
6. In the three examples in Fig. 6.1 what are the relative fre-

quencies?

7. Give a broad meaning of resonance.

8. What are the two possible fundamental accomplishments of

resonance? Give illustrations of each.

9. From the discussion concerning conical horns, what would you
anticipate concerning the effectiveness of a hearing trumpet 30 cm.

long, and why?
10. The theory of resonators herein given does not discuss the

nature of the material of the walls. Under what condition is the

omission justified?
11. Why does it require time to build up the energy in a pipe

closed at one end ?

12. Why is it possible to build up energy in a pipe open at both

ends?

13. Show that in the resonator, Fig. 6.5 (a), if the radius of the

orifice is increased, the frequency is increased, and that if the length
of the neck is increased, the frequency is decreased.

14. In the experiment illustrated in Fig. 6.4 what limits the inten-

sity of sound produced? If the chamber were lined with absorbing
material would the same intensity be produced?

15. Would it be possible for a man to play such a note on a musical

instrument that a large steel bridge would be set into vibration and

finally collapse?
1 6. Construct the graphs verifying the resonance wave-lengths of

cylindrical pipes as given in Section 6.7. Compare the physical action

with the graphs.

17. If one fills his Jungs with hydrogen gas and then attempts to

speak in the usual way, a marked effect is produced on the voice.

Why?



CHAPTER VII

MUSICAL SOUNDS

7.1. Musical Tones. It is not the purpose to enter here

into either a physiological or a psychological discussion of the

requirements for a tone that is "musical/* It is a fact, how-

ever, that we demand for the most pleasing consonance a simple
ratio between the frequencies of a complex musical sound. This

is illustrated by the development of our musical instruments

which in general give tones having the ratios of frequencies,

1:2:3:4:5, etc.

7.2. The Vibration of a String. In a string we are usually

concerned with transverse vibrations. It is true that longitu-

dinal vibrations can be set up in a string or in any solid. A
piano string, if rubbed so as to excite longitudinal vibrations, will

give a very high tone. In all string instruments the transverse

and not the longitudinal vibrations are utilized.* The longitu-

dinal vibrations are displacements along the direction of wave-

propagation and consequently possess condensations and rare-

factions,f The velocity of such waves depends upon the force

necessary to cause a given condensation and the density or mass

per unit volume of the material. This dependence has been dis-

cussed in Chapter I. In the case of a steel wire the velocity is

about 5,000 meters per second.

Suppose a stretched wire, fastened at 0, Fig. 7.1, is by some

means bent in the form shown and then released. The tension

in the wire will cause a return to its original position. But it can

be shown mathematically that the wire can retain the form in the

* The longitudinal vibration of a string is actually used in laboratory tests

where a tone of high frequency is desired. The string may be rubbed by a sponge
saturated with turpentine. The string is one-half wave-length long. From a

knowledge of the wave-length and the velocity, the frequency can be computed.

fThe transmission of waves in solids involves, in general, another type o f
(

vibration also.
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same position given in Fig. 7.1 without any constraint whatever

if the wire is moved to the left or right with a certain velocity v.

In other words, a wave of this transverse displacement described

will travel along the wire with a velocity v. From the very nature

of the case one might expect the velocity in a perfectly flexible wire

to depend only upon the tension of T, and the mass of the wire

per unit length. That this is the case is stated in equation (7.1).

FIG. 7.1

If a transverse wave of displacement travels along the wire,

it will be reflected at a fastened end and return in the opposite

direction with the same velocity. The condition of stationary

waves is fulfilled for there will then be two waves of equal ampli-
tudes and frequency travelling in opposite directions. Since the

wire is fixed in position at the ends, nodes will occur there. In

Fig. 7.2 is what is called the fundamental or the lowest frequency

FIG. 7.2

of vibration. The vibration of next higher frequency with which

the wire is capable of has one additional node as in Fig. 7.3.

Successively higher frequencies that are possible have two, three,

etc., additional nodes, respectively. The length of the wave in

the wire is obtained in the same manner as is the wave-length in

the stationary waves described in the Chapter VI. The distance

between two adjacent nodes is one-half wave-length, but this is

one-half of the Wave-length in the wire.
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A string may vibrate simultaneously with the frequencies

shown in Figs. 7.2 and 7.3. The lowest of these frequencies is

called the "fundamental" and the others, respectively the first,

second, etc., "overtones." Any one of these various frequencies

is easily brought out by producing a corresponding node after

the string has been bowed or plucked.

FIG. 7.3

It can be shown that the velocity of the transverse wave in

the wire is

IT
,

.

(7-0

where T is the tension and m is the mass per unit length. In

computations T is expressed in dynes
* and m in grams per unit

length. Let L be the length of the wire. If for the fundamental,

L is equal to one-half of the wave-length, X, then, since frequency
is velocity divided by wave-length (see equation 1.4), the fre-

quency, , may be expressed as follows:

This is the formula for the computation of the frequency of the

fundamental of the string of any instrument.

7-3- Measurement of Relative Intensities of Fundamental

and Overtones. The nature of the aerial wave given off by a

* The weight of one gram is a force of about 980 dynes.
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string is of interest. From mechanical considerations it is real-

ized that the vibrations of the string are communicated to the

body of the instrument, such as the violin, and subsequently to

the air. A problem is to measure the aerial vibrations, obtaining
the relative intensities of the components. This is by no means

easy for there is no direct method. If the sound falls upon a

diaphragm and the motion of the diaphragm be recorded on a

smoked paper, a curve will be obtained. This curve can sub-

sequently be studied by an expert and the nature of the compo-
nent vibrations obtained. But the diaphragm, because of its own

resonance characteristics, will distort

the relative values of the amplitudes
of the components in the sound wave

and, unless a correction can be made

for such errors, the relative ampli-

tudes of the sound waves cannot be

obtained. Fig. 7.4
* shows such a

mechanically produced tracing on

the top line and below the analysis

of it. There are three component
vibrations having relative frequen-

cies of i, 2, and 37 In this particular

Fio. 7.4 case, the fundamental has the great-

est amplitude, but this is not always

true, either in the case of the violin, which was used in the present

case or of other instruments. Yet the fundamental determines

what is called the "pitch
"

N N N
of a musical sound. It is A / V A / \ A f \ A
a curious fact in audition \J v \J V \J V \J

\

that the fundamental is P
more prominent to the

ear than is the same intensity of any overtone. The character

of the sound from an organ pipe is shown in Figs. 7.5 and 7.6.

The former shows the resultant vibration produced by an organ

* Taken from Miller's "The Science of Musical Sounds,*' Macmillan, 1916, as

are also Figs. 7.5 to 7.12.
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pipe and the latter the composition of it expressed in terms of the

frequencies which have the ratios 1:2:3:4, etc., up to 12 times

the fundamental.

7.4. Instrumental Quality. The difference between the

quality of a tone of an organ pipe and that of a violin must lie

in the relative intensities of the fundamental and overtones. This

indicates that the overtones, al-

though difficult to recognize by ear

as such, are compositely very prom-
inent in a musical tone. As a matter

of fact the ear is a very sensitive de-

tector of overtones and the develop-

ment of the various types of musical

instruments with their ensemble in

an orchestra has depended upon just

this sensitiveness.

7.5. Sounds from Various Instru-

ments. In Figs. 7.7 to 7.12 are pre-

sented charts showing the relative

sound intensities of the components
of various musical sounds. The ver-

Fio. 7.6

tical lines indicate the relative intensities. Along the horizontal

the frequencies are distributed as on a piano, equal distances signi-

fying an octave. These intensities have been secured from such

curves as in Fig. 7.4 by making corrections for the resonating char-

acteristics of the recording device and by transposing the facts

concerning frequencies and displacement amplitudes into values

of relative intensity. Relative sound intensities are always pro-

portional to the square of the product of the frequency and the

displacement amplitude. That is, if a tone of frequency 100 has

an amplitude of 10 and a tone of frequency 500 has an amplitude
of 2, the intensities would be equal. Hence, in obtaining relative

intensities from amplitudes the frequencies must always be con-

sidered. Fig. 7.7 shows the relative intensities in the sound from
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a tuning fork, the voice, the flute, the violin and the French horn,

when each is sounded on the fundamental tone. Fig. 7.8 shows

an analysis of flute tones. The lowest line shows the average

TUNING
FORK

VOICE

7 2 3 4 56789 10 15 20

FIG. 7.7. Distribution of energy in sounds from various sources

composition of all the tones or the low register of the flute when

played pianissimo. The second line from the bottom shows the

middle register played pianissimo. When the lower register is

2 3 4 5 6 7 8 910 15

Fio. 7.8. Analyses of flute tones

played forte, the octave becomes the most prominent as shown in

the third line. When the middle register is played fortey
the

fourth line results. Figs. 7.9, 7.10, 7.11, 7.12 and 7.13 show Pro-

fessor Miller's results for the violin, the clarinet, the oboe, the
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FIG. 7.9. Analyses of violin tones
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FIG. 7.12. Analyses of tones of bass and soprano voices
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horn and bass and soprano voices. The variations in distribu-

tion are wide.

7.6. Recognition of Phase Differences of the Components.
Sound from a given instrument may vary in at least two respects,

the relative intensities of the components and the relative phases
of the components. It is a peculiar circumstance that the ear

FIG. 7.13

recognizes the combined tone as the same irrespective of the phase
relations among the components.* But the trace of the resultant

vibration differs widely with changing phase relations of the com-

ponents. The reader can readily see this from the accompanying

drawings, Fig. 7.13 and Fig. 7.14. In Fig. 7.13 are drawn two

FIG. 7.14

dotted curves representing the displacements in two simple har-

monic vibrations (of a diaphragm, let us say), one having twice

the frequency of the other. It is a note and its octave. The

only difference between Fig. 7.13 and Fig. 7.14 is that the com-

ponents are shifted in phase relative to one another. In each

*
Barton, "A Textbook of Sound," pp. 605-607.
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case one-half the sum of the two curves, or the resultant ampli-

tude, is obtained by drawing the mean. The mean value curves

are very different in the two cases. Indeed an inexperienced per-

son would claim that the component vibrations could not be the

same. Yet these two resultant vibrations give the same auditory

sensation. This circumstance, that two dissimilar vibrations give

the same sensation, makes the appearance of the resulting vibra-

tion curve very deceiving.

QUESTIONS

1. Of what two types of vibration is a string capable? Which
one is used in music?

2. Upon what factors does the velocity of a transverse wave in a

perfectly flexible wire depend?
3. What frequencies are possible in a string in terms of the funda-

mental?

4. Why does the vibration of the string cause a vibration of the

body of the violin?

5.
Which component tone almost invariably determines the pitch

of a sound?

6. Is there any difference in the perception of the fundamental and

an overtone?

7. Can phase relations of components be recognized?
8. Upon what does the distinctive quality of sound of a musical

instrument depend?
9. Assuming that the velocity of a longitudinal wave in a steel

string is 5,000 meters per second, how long must a string fastened at

both ends be in order to give a frequency of 1,000 per second?

10. What are the difficulties in detecting the components of a tone

by eye inspection of the time trace of the vibration?

11. In at least what two respects is there an opportunity of affect-

ing the quality of voice by training?
12. Why is the frequency of a string much higher with longitu-

dinal than with transverse vibration?

13. What difference would be noticed if one was suddenly enabled

to detect relative phase changes in components?
14. Why would the difference in quality of two violins depend

upon the box, upon the nature of the string?

15. Would the quality of tone of any instrument alter during the

entire time of its rendition? Answer by a consideration of one or two

instruments.



CHAPTER VIII

THE NATURE OF VOWEL SOUNDS

8.1. The Nature of Speech Sounds. It is well to observe

the physical mechanism producing speech, a vibrator, resonance

chambers and an egress for the acoustic waves. During speech
these three are almost constantly changing. If one speaks a syl-

lable slowly so that the vowel sound therein may be said to be

sustained, then there is an approximation to a steady physical

state of affairs at the middle of the time interval for the syllable.

But the vowel is not usually defined as limited to this midpoint
at the interval. Moreover the component sounds of a vowel

would not be the same in magnitude and frequency with different

speeds of enunciation of the syllable. This is because of two

effects. The establishment of resonance requires time. More-

over if a resonant chamber receives an impulsive change of pres-

sure it will give a rapidly decaying response in its own natural

frequencies. For example, when the hands are clapped over the

mouth of an empty jar, the sound heard is characteristic of the

vessel itself. So it is easily realized that speech is a very com-

plicated acoustic phenomenon, quite beyond the physicist's de-

scription at the present time. For that reason the discussion in

this chapter is practically limited to the composition of the sus-

tained vowel sounds and even here the results are not at all com-

plete. In the first instance the results presented will be those

obtained by Professor D. C. Miller,* whose work represents the

beginning of modern physical research on vowel sounds.

8.2. The Vowels Used. In an experimental test it is neces-

sary to define the vowels tested. This was done by the following

groups of words:

*
Figs. 8.1 to 8.6 are taken with permission from Miller's "Science of Musical

Sounds." Published by Macmillan, 1916.
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father,

raw,

no,

gloom,

maty

pet,

they,

bee,

far,

fall,

rode,

moor,

add,

feather,

bait,

p/que,

guard,

haul,

goal,

group,

cat,

bless,

hate,

mach/ne.

In considering the results obtained by Professor Miller, one

must bear in mind that they have been secured through careful

observation and the development of a technique in which all

known corrections have been made. The intensities of the com-

ponents in the first vowel as in father are shown in Fig. 8.1.

ti

129 259 517 1035

FREQUENCY IN CYCLES PER SECOND
2069 4/38

FIG. 8.1. Loudness of the several components of the vowel in father

intoned at two different pitches

Here the vowel is sounded on two different pitches and in each

there is greater intensity in the region of 922 cycles. The fre-

quencies for which the measurements are made are given by the

circles, the largest one indicating the fundamental tone. The

smooth curves are drawn merely to indicate the general magnitude
of intensity in a frequency region. They do not indicate actual

intensity for any selected frequency. Fig. 8.2 shows additional
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experimental values of the components involved in this same

vowel. 5, C and D are the results of intoning at three different

pitches. The curve A deserves special attention, because it is a

composite of twelve such graphs. Twelve different notes were

used as fundamentals and thus a distribution of computed values

259 517 1035

FREQUENCY IN CYCLES PER SECOND
2069 4138

FIG. 8.2. Distribution of energy among the several partials of the

vowel in father, intoned at various pitches

were obtained. The reason that, with a given fundamental, the

only frequencies indicated are integral multiples of the funda-

mental, is explained in Section 15.6. Briefly it may be stated

that if one has a vibration that is periodic, i.e., recurs at fixed

intervals of time, its component frequencies must *
all be integral

multiples of the fundamental whose period is this interval of

time.

Hence in the analysis in any case only integral multiples of

the frequencies are obtained. Returning to Fig. 8.2 it is easily

seen that we have here a remarkable verification of the depend-
ence primarily upon frequency regions. In Fig. 8.3 are shown
the results with eight different voices sounding the vowel a in

* The proof is entirely mathematical.
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4138

FIG. 8.3. Distribution of energy among the several partials of the

vowel in father as intoned by eight different voices

father on eight different fundamental tones. Fig. 8.4 snows

the results with voices of the vowel in bee. Here the second

resonance peak is drawn as a mean result of all eight voices. It

259 5/7
FREQUENCY IN

/035 J069
CYCLES PER SECOND

4/36

FIG. 8.4. Distribution of energy among the several partials of the

vowel bee, as intoned by eight different voices
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is evident that this is a vowel with two resonance regions; one

about 300 and one about 3,000 cycles. This conclusion is verified

by the use of an acoustic wave filter,* which will transmit the

MA

MA

MAW

MOW

129

yv

4138259 577 7035 2069

FREQUENCY IN CYCLES PER SECOND

FIG. 8.5. Characteristic curves for the distribution of the energy in

vowels of Class I, having a single region of resonance

lower and not the upper frequency region. If the vowel in bee

is spoken through such a filter, it becomes almost the same as the

fourth vowel in the list or as in gloom. The reason therefor is

MA

MAT

MET

129 259 517 1035 2069 413Q

FREQUENCY IN CYCLES PER SECOND

FIG. 8.6. Characteristic curves for the distribution of the energy in

vowels of Class II, having two regions of resonance

readily seen in Fig. 8.5, wherein the latter vowel is shown to have

a characteristic region in the neighborhood of 326 cycles or prac-

tically the same as the lower one of the two regions in Fig. 8.4.

Figs. 8.5 and 8.6 show two different types of vowels. In the

*
Acoustics, Stewart and Lindsay.
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former there is only one characteristic region and in the latter

two characteristic regions. The vowel in ma is shown in both,

for sometimes it shows two characteristic regions close together.

This splendid group of curves shows with remarkable clearness

the difference in the vowel characteristics.

8.3. Characteristic Regions Are Resonance Regions. In

the discussion of resonance in a previous chapter attention was

called to the resonance of the mouth, pharynx and larynx, and

to the fact that the presence of this resonance increases the energy

given off by the vocal chords in corresponding frequencies. It is

to be expected, therefore, that the characteristic vowel frequen-

cies would be produced by the resonance chambers. That this

is true can be verified by adjusting the mouth and lips for the

sounding of a certain vowel and then by presenting before the

lips a vibrating tuning fork having a frequency in the character-

istic region of that vowel. The tuning fork will be strongly re-

enforced. The fact that the vowels can be whispered as well as

spoken is also a verification of this point. Sir Richard Paget's
*

results show that there are always two simultaneous resonances,

produced in two cavities separated by the tongue. Moreover he

has by practice been able to demonstrate in the lecture room these

two simultaneous regions, the source of sound being the clapping

of hands in front of the mouth.

An elaborate investigation of the characteristic regions has

been made by Crandall f of the Bell Laboratories. The results

are shown in the accompanying Figs. 8.7 and 8.8. In both of

these figures the relative amplitudes at the different frequencies

are plotted after taking into consideration the sensitiveness of the

ear (see Chapter X). The "ordinates," vertical distances, in any
one graph then represent what might be termed the relative

"effective amplitudes" with that vowel. The ordinates for one

graph are not to be compared with those of another since it is

not the intention to show such a relation between the vowel

* "Human Speech," Harcourt Brace & Co., London, 1930.

t Bell Sys. Techn. JL, IV, 4, p. 586 (1925).
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sounds. The results of the investigations of Miller and Crandall

are in general agreement. The differences in methods of meas-

urements are probably accountable for the differences in con-

Fio. 8.7
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elusions. Crandall's method of obtaining the amplitudes of the

components involves the entire record of the vowel from start to

finish. He finds the average characteristics throughout its dura-

tion. There is first a period of rapid growth of 0.04 sec., second

a middle period of about 0.165 sec., with variations but with

approximate constancy and third, a period of gradual decay last-

ing 0.09 sec. This is the approximate description of the duration

n

m

64 yo 128 181 236 362 312 '724 1024 14482048 28^640^6 5792

Mais Frequency

FIG. 8.8

of a vowel sound. There is a variation with the individual and

with the vowel, but the general relative magnitudes are retained.

Crandall's results leave us with not so clear a distinction as to

the number of resonance regions possessed by a vowel. It can-

not be stated that any given vowel has only one or two resonance

regions. Indeed any classification as to number offrequency regions

would seem to involve crude limitations not fully justified. The

differences and similarities of male and female vowel sounds are
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also to be noted. As a matter of fact, "resonance region" is an

omnibus term and a description using it cannot be regarded as

sufficiently specific.

84. Clearness of Enunciation of Vowels. All of the vowel

sounds shown above have characteristic frequency regions that

are in the upper half of the ordinary piano scale. Clear enuncia-

tion thus does not need the bass quality of voice. Indeed, clear-

ness must depend upon the relative amounts of energy that go
into these characteristic frequencies. If all the energy is in a

characteristic frequency region (or in all the characteristic regions

as the case might be) the maximum clearness will be secured. It

has often been observed that a child's enunciation of vowels is

more clear than a man's and presumably the foregoing is a reason

therefor.

It is impossible to enunciate vowels clearly in singing unless

the fundamental tone is lower than the characteristic frequency

region of the vowel sounded. This is a well-known difficulty.

Moreover, a great effort to sing the vowels clearly affects the

quality of tone to an appreciable degree and prevents the artist

from securing the best musical effect.

Since vowel characteristics depend upon resonance and since

time is required in getting the maximum intensity, it follows that

vowel sounds must be sustained for a short period of time in

order to be the most intense for a given effort on the part of a

speaker. The sustained vowel sound probably enters into speech

in other respects as well. But it is certain that rapidly spoken
vowels are detrimental to clearness.

In the discussion in this chapter the inference has been made

that a steady-state vibration of the vocal chords can be secured.

But practically this is not true. Indeed, some claim that the

motion of the vocal chords is largely impulsive. One must expect

that a detailed study of the mechanism will bring out many
details at variance with the more simple picture in this chapter.

8.5. Variation in Vowel Sounds. Professor Miller's records

were made of sustained vowels only, for the reason that the rec-
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ords of the vowels while they were beingformed did not contain a

sufficient number of like vibrations to make measurement pos-

sible. The recent development of filters, both electric and acous-

tic, has made the variable character of the vowels demonstrable.

The following experiment by Stewart,* briefly referred to in Sec-

tion 8.2, shows the variable character of the vowel . The word

eat was spoken through an acoustic wave filter which prevented

the transmission of all frequencies above 2,900. But the mouth

was formed for the vowel before it was sounded. Hence it had

from its beginning the same adjustment as for a sustained vowel.

A listener heard the word practically as oot. The removal of

frequencies above 2,900 transforms the e into approximately 66.

But if the word meet was spoken through the filter, it was easily

recognized for there was a distinct sound of e. But if the vowel

in meet was prolonged the e quality disappeared. In other words,

the e heard consisted of frequencies below and near 2,900 which

existed only temporarily while the vowel was being formed. The

reason for the formation of lower frequencies can be understood

by noticing the changes in the mouth during the utterance of the

vowel. The mouth formed for an m must now be opened wider

for an e. Assuming that the interior of the mouth is correctly

formed for an e, the changing of the lips will increase the area of

the orifice and raise the pitch of the resonance frequencies. The

group of high frequencies should therefore alter during the for-

mation of the vowel and in the direction demonstrated in the

foregoing experiment. Inasmuch as the formation of vowels fol-

lowing consonants requires a change in the shape of the mouth,

there is in general a change in the components of any vowel when

preceded by a consonant. Similar considerations will apply to a

vowel succeeded by a consonant. In the case cited above the

consonant / shuts off the vowel so quickly that no noticeable

change in the vowel is produced.

*
Stewart, Phys. Review, 1923, Abstract of paper at Washington meeting of

Am. Phys. Soc., April, 1923.
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QUESTIONS
1. Is the clearness of vowel sounds dependent upon the speed with

which they are voiced and why?
2. What reasons may be given for the differences in individual

curves in Fig. 8.3?

3. Why are the vowels sounded universally alike?

4. In a previous chapter, the importance of the diameter of a

sound reflector behind a speaker was emphasized. If the vowel sounds

were the only ones of importance, what would you say about the

minimum size of such a reflector?

5. Why may a vowel sounded by a bass and a soprano voice be

recognized as the same?
6. Why does a highly pitched voice seem to carry relatively well

in addressing a crowd?

7. Discuss the possibility of a
"
monotone

"
learning to speak.

8. According to the reasons given for vowel production, would it

be possible to imitate speech by mechanical means only?

9. What are the causes of unavoidable variations of a vowel sound,

considering the different parts of its duration ? What additional vari-

ations can be introduced?



CHAPTER IX

CERTAIN PHYSICAL FACTORS IN SPEECH

9.1. Energy Distribution. One of the inquiries arising in

speech concerns the relative amount of energy in the various fre-

quencies used by a speaker. The recent development of ampli-

fying tubes which can multiply electric power has enabled Messrs.

Crandall and MacKenzie to measure this frequency distribution

of energy in speech. These measurements have been made by

using a 5o-syllable sentence of connected speech and also a list

.004
-MALE
~FEMALE

.002 \

.003

.002

.001
\

1000 2000 3000 4000

FREQUENCY

1000 2000 3000 4000

FREQUENCY

FIG. 9.1. Energy distribution

of 5o-disconnected syllables. The results show that the energy

distribution varied more with individuals than with the nature of

the test material chosen. Fig. 9.1
* shows in the first plot two

composite curves. The one marked "male" is the mean of four

curves representing the results taken with men. The curve

marked "female" is the mean of two curves taken with women.
*
Physical Review, March 1922, p. 228.
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In the second plot is drawn the mean of all six curves. The ordi-

nates of the curve are arbitrary and need not concern us here

excepting that they are proportional to flow of energy.

The test sentence was the first sentence of Lincoln's Gettys-

burg address but with the addition of two words "quite" and

"nice" to bring the total number of syllables to fifty and to

"improve the balance between the vowel sounds."

.006

.004

(

7000 2000 3000

FREQUENCY
4000

FIG. 9.2

The sentence was uttered slowly syllable by syllable, in order

to give time for the instruments to be read for each syllable.

This method was not wholly satisfactory and will be subsequently

improved.
In Fig. 9.2 are shown certain energy distributions. A was ob-

tained by assuming Professor Miller's results for vowels; B was

obtained experimentally by disconnected speech sounds, and C

by connected speech sounds.

The curves A and C do not agree. The difference should of

course be contained in the consonants, but this explanation ap-

pears to the above workers as not sufficient. It is evident that

the difference may be explained qualitatively by the variable
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character of the vowels and the incorrectness of assuming that

the sustained vowels give the correct energy distribution.

These results, while giving the actual distribution of energy,

do not give the relative importance of the different frequencies

in clearness of speech, an important problem which is considered

in the next section.

9.2. Useful Energy Distribution. Dr. Harvey Fletcher has

presented the first report
* on the ability of the ear to interpret

speech sounds under different conditions of loudness and of dis-

tortion caused by the elimination of groups of frequencies. This

is a direct method of determining the useful energy distribution.

Inasmuch as the actual pronunciation of a vowel occurs in sylla-

EfFECT UPON INTERPRETATION OF EUMHUJING
N*RK)US PORTIONS OF THC FREQUENCY RANGC

2000 3000

FREQUENCY

FIG. 9.3

bles, the tests were made with selected syllables. These were

prepared in lists of 50, in which occurred a distribution of the

three types, vowel-consonant, consonant-vowel, and consonant-

vowel-consonant. In all 8,700 syllables were chosen. Fig. 9.3

shows the results of articulation tests in graphical form. The

abscissae, or the horizontal distances, represent the limit of the

frequencies used and the ordinates the percentage of correct judg-

ments as to the sounds received. In the curve having its begin-

* Bell System Technical Journal, Vol. I, July 1922.
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ning at 100%, for the frequency of 1,000 the articulation is 86%,
The interpretation is that if all frequencies below 1,000 were

eliminated, 86% of the syllables could be correctly understood.

Again, using the same curve, it is found that 40% of the syllables

were understood if all the frequencies less than 1,950 were elimi-

nated. The interpretation of the other curve is similar but the

elimination of frequencies is above the limit instead of below.

On this second curve 40% of the syllables were understood if all

the frequencies above 1,000 were eliminated. From the two

graphs, the following additional conclusions may be derived: (i)

A system which eliminates all frequencies above 3,000 has as low

a value of articulation as one which eliminates all frequencies be-

low 1,000 cycles per second. (2) At a frequency of 1,550, or in

the third octave above middle C, the importance of the frequen-

cies higher than this value is as great as that of the frequencies

lower than this value, the limit of consideration being 5,000.

Several of the conclusions of Dr. Fletcher concerning the use-

fulness of speech sounds are as follows:

1. The short vowels, , 0, and e are seen to have important
characteristics carried by frequencies below 1,000.

2. The fricative consonants j, z, and th are affected by elimi-

nation above 5,000.

3. The fricative consonants s and z are not affected by the

elimination of frequencies below 1,500.

4. The sounds /A,/ and v are the most difficult to hear and

are responsible for 50% of the mistakes of interpretation. The

characteristics of these are carried principally by the very high

frequencies.

One of the practical applications of the information gained

concerning speech sounds is in long distance telephony. In de-

signing these telephone message circuits it is important that a

frequency range be selected within which the transmission shall

be made as excellent as possible. At the present time in America

the range selected *
is between 250 cycles and 2,750 cycles, with

the endeavor to make the transmission for these limits attain a

*
Martin, Bell Sys. Tech. JL, IX, p. 483 (1930).
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certain standard. The loss in transmission at 250 and 2,750

cycles is more than that 1,000 cycles, but by an amount that is

not strikingly noticeable to the ear. The extension of the above

stated range by a few hundred cycles evidently cannot, as shown

in the foregoing figure, materially improve the understanding of

telephone messages. But if, in the future, much more perfect

station instruments are produced, more naturalness will be at-

tained and largely because of the better reproduction of the

fricative constants.

9.3. Speech Energy. Crandall and MacKenzie,* using fifty

syllables spoken in a normally modulated voice by six different

speakers (four men and two women) give 125 ergs per second as

the average acoustical output. Sabine f using a very different

method obtains for certain vowels an output varying from 271

to 70 ergs per second. An acoustical output of 100 ergs per sec-

ond would be 10 millionths of a watt or 10 microwatts. The non-

technical reader can compare this value with the lamp at his

study table, rated at 40 watts. The actual power output in

speech is approximately two ten-millionths of that of a 40 watt

lamp.

Interesting experiments have been performed to ascertain the

relative amount of flow of energy or power occurring in conver-

sational speech. Sacia and Beck t have presented their results

in the form shown in the accompanying Table IV.

The power during the existence of a given sound is averaged

and this is called the "mean power," The "peak power" is the

average of the maximum value for two speakers. As may be

seen the vowels rank the highest, the semi-vowels next and the

consonants the lowest.

*
Crandall and MacKenzie, Phys. Rev., 19, 1922, p. 221.

t P. E. Sabine, Phys. Rtv. y 22, 1923, p. 303.

t toll System Tech. Jl.% V (1926), p. 393.
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Table IV

* The dash indicates that observations were not available.

QUESTIONS
1. Show from a consideration of Figs. 9.1 and 9.2 that a man's

clearness of enunciation of vowel is less than a woman's.
2. What other factors are involved in the production of superior

clearness of speech?

3. What is a striking illustration of the fact that clearness of

speech may depend upon very small sound intensities?



CHAPTER X
AUDIBILITY

lo.i. Energy Required for Minimum Audibility. There

have been many observations made of the sensitivity of the ear

and a summary of results ^nd methods would be impracticable.

The results of Wien,* Kranz f and Fletcher and Wegel J are the

most reliable, though they differ by much more than can be

accounted for in the difference of the observers. The number of

ears used in these investigations were, respectively, 3, 14, and 72.

If the results are weighted by these numbers and the means taken,

the best values of minimum audible pressure, expressed in dynes

per sq. cm., are found to be:

These values show that the threshold value of pressure (or the

minimum audible pressure) is fairly constant above 1,000 vibra-

tions per second and increases rapidly at lower frequencies. At

an octave above middle C the pressure is approximately .001

dynes per sq. cm. This is a region of important frequencies and

may be regarded as the most representative single value of the

sensibility of the ear. From these values and a knowledge of the

plane waves, it can be shown that the minimum rate of energy
flow through a square centimeter in such a wave is of the order

*
Wien, Arch.f. ges. PhysioL, 97, p. i, 1903.

t Kranz, Phys. Rev., 21, p. 573, 1923.

t Fletcher and Wegel, Phys. Rev., 19, p. 553, 1922.
In expressing the dynes per sq. cm. of a pressure that varies periodically,

positive, zero, negative, etc., one cannot give the average pressure for that would

be zero. But since the intensity of the sound varies with the mean square of the

pressure, it is customary to refer to the pressure of a sound wave as the square
root of this mean square. This gives a value proportional to the square root of

the intensity and proves convenient. The maximum pressure can be obtained by

multiplying this value by -^T.

123
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4 X io~16
(or 4 divided by the number ten raised to the sixteenth

power) watts or 4 X io~l microwatts.*

10.2. Limits of Audibility. The limits of audibility can be

best expressed in the form of graphs. Fig. 10.1 is taken from the

work of Fletcher and Wegel.f The full-line portion of the lower

curve is a plot of the observations of minimum audibility men-

tioned in the foregoing paragraph. The ordinates represent the

square root of the mean square of the pressure from the normal.

The units at the right are explained in Section 10.6.

*304 FREQUENCY V

FIG. i o.i. Any sound that can be heard lies within the field

outlined here. Areas covered by the most prominent speech sounds
are indicated.

The upper curve represents experiments on 48 normal ears

and is regarded as the "maximum" because at these pressures

there is a sensation of feeling which limits the pressure used in

any hearing device. This statement assumes that the sensation

of feeling is approximately the same in abnormal ears, and hence

it can be only an approximation, which varies with the nature of

the abnormality. It is interesting to learn that the intensity for

feeling is about equal to that required to excite the tactile nerves

in the finger tips.
* The square root of the mean square of pressure in dynes can be shown to be

equal to VIP. 5 X Et where E is the flow of energy in ergs per sq. cm. per sec. and

to V^o-5 X io7 X , where E is the flow of energy in watts per sq. cm., being
the flow of energy produced by a plane wave having this pressure.

t See Wegel, Bell System Technical Journal, Vol. I, No. 2, 1922. The form
used in the figure is that suggested by J. C. Steinberg of the same laboratory.
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The full-line curves have been extended as dotted curves and

made to meet at approximate values of the frequency limits of

audibility. The lower value, 20 vibrations, is really a high value

selected because there is not an agreement as to the smallest fre-

quency that can be recognized as a tone. The upper limit, here

represented as 20,000, varies distinctly with age, being higher for

the young and becoming lower with age. It has not been demon-

strated whether this change is pathological or physiological. The
cross hatched areas show the ranges of pressures and frequencies

for the sounds indicated. The important frequencies in voice

timbre and sibilance are also shown.

10.3. Deafness Defined in Dynamical Units. These authors

have found that in the region up to 4,000, persons of normal hear-

ing require a pressure variation of approximately 1/1,000 dynes

per sq. cm. for audibility. Persons called
"
slightly deaf" require

a pressure of i/io dynes per sq. cm. A person requiring I dyne

per sq. cm. can usually follow ordinary conversation. Those who

require 10 dynes per sq. cm. need artificial aids to hearing.

In this connection it is also interesting to note that even if

sounds could be amplified indefinitely, yet there is a limit to

amplification because one cannot use an intensity great enough
to cause pain. Hence only the deaf that have a range of pressure

sensitivity between 1,000 and 1/1,000 dynes can be made to hear

through artificial aids such as amplifying tubes and microphones.

The above comments do not consider the totally deaf who by
definition cannot be made to hear. Also, the conclusions as to

painful effect have been obtained by a study of those not deaf

and hence the numerical limits here fixed are open to question.*

10.4. Types of Deafness. That deafness may have many
causes has been well known to otologists but only in recent years

have attempts been made to study types of deafness by actual

*
Reger, of the Psychological Laboratory at the University of Iowa, reports

that the congenitally totally deaf as well as those who have lost their hearing
and vestibular reaction due to cerebral meningitis, experience the sensation of

feeling at approximately the same sound pressure at various frequencies as do

individuals with normal hearing. He believes that the sensation arises from the

stimulation of pain receptors within the tympanic membrane.
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measurement of hearing. In Fig. 10.2 are represented
* four

curves of ear tests, plotted as in the original data. As will be

readily seen the four cases vary widely. The ordinates on the

right represent the relative loudness change as observed by a nor-

mal ear. The upper and lower curves in each case correspond to

the similar curves in Fig. 10.1. A change of 10 in loudness means

that there is an apparent change of 10 times the loudness.

10.5. Loudness. One of the most interesting contributions

to this field is that of Professor Wallace C. Sabine.f He used

several different musical instruments, obtaining an equality of

loudness for the seven frequencies shown in the accompanying
Table V. In the second column of this table is shown an arbi-

trary number obtained for each frequency at equal loudness by

dividing the actual intensity by the minimum intensity required

for audibility of that frequency. This column therefore repre-

sents in each case the actual intensity in terms of the minimum

audible intensity for that frequency. For a frequency of 64 the

intensity is 0.7 X io6 times the minimum audible intensity for

that frequency.

Table V

The application of these comparisons is perhaps not at once

evident. Assume that one is listening to an airplane, flying first

near by and then at a distance. Assume that when it is in the

near position a number of frequencies are heard, apparently of

* These are from curves shown at Philadelphia by Dr. Harvey Fletcher, in

1923. See "Speech and Hearing," D. Van Nostrand Co., p. 200.

t Collected papers in "Acoustics," p. 129.
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equal loudness. What will occur when the airplane recedes to a

distance, assuming, for the moment, that the intensity of each

frequency will decrease inversely as the square or any other power
of the distance? The intensity of each frequency will be cut

down to the same fraction of its original intensity. If this frac-

tin is small enough some of the frequencies will be thereby cut

down below audible intensity and cannot be heard. Hence the

quality of sound from the airplane will change. Suppose the

fraction is 1/100,000. Divide each number in the second column

by 100,000 and it is seen at once the intensity of the 64 and the

4,096 frequencies have fallen below the intensity of minimum

audibility in each case. If the fraction is 1/10,000,000, it is easy

to see that the 128, 256 and 2,048 cannot be heard. As the frac-

tion gets less and less, additional frequencies will disappear. The

last frequencies to be heard will be in the region of 1,024. We
have here, then, a clear explanation of the change of the quality

of sound with distance only. As hereinbefore stated, diffraction

and reflection are not discussed. They have independent influ-

ences in the variation of quality with distance. Steinberg
* has

shown that if a component tone has less than its own threshold

pressure, it will not add to the loudness of the complex tone.

Thus, in harmony with Sabine's results just stated, a complex
sound can be heard no further than its most persistent component
can be heard alone. It is obvious that if the entire energy avail-

able be expended in a tone of just one frequency, it can be heard

further than the same energy distributed in any combination of

frequencies whatever. This accounts for the apparently different

carrying qualities of sounds from various sources. These con-

siderations are, however, not the only ones applicable when other

masking sounds are present.

10.6. Weber's Law Fechner's Law Sensation Units.

There is a general law in psychological literature that evidently

is a law of the nervous system and is independent of the nature

of peripheral organs. It may be stated as follows. The least

*
Steinberg, Physical Review, 2, 26, p. 507 (1925).



WEBER'S LAW FECHNER'S LAW 129

detectable change in any stimulus is proportional to the intensity

of that stimulus. This law of Weber has been verified in many
directions, such as hearing, vision and feeling. In acoustics we

are interested to know the relation between intensity and loud-

ness. Although not an exact statement, a reasonably accurate

guide has been found in assuming the sensation of loudness

to be proportional to the logarithm
* of the intensity in the

stimulus.

This logarithmic law is usually known as Fechner's law and is

expressed as follows:

S = r logi<,/> + a.

Here S is the sensation or loudness, p is the pressure and a and

c are constants for any one frequency. For frequencies varied

from loo to 4,000, c changes not more than 10%. MacKenzie \

has performed experiments on the relative sensitivity of the ear

at different levels of loudness and his results confirm the correct-

ness of Fechner's law. He found that c is a constant. Now
loudness should be measured in units so that twice the sensation

of loudness would be indicated by twice as many units. It is

observed in the preceding equation that, since the sensation of

loudness varies with the logarithm of pressure, one cannot use

for units of this sensation, units of pressure. A new unit is desir-

able and the literature is gradually adopting as a definition of

sensation units ,
S = 20 logio p. The value of S is said to be in

"decibels." The sensation level, "SL," of a tone is defined by

SL = 2olog10 p//>o,

where po is the threshold pressure. The sensation level is really

the number of sensation units in decibels that are required to re-

duce the tone to the threshold limit. A difference of one decibel

* The logarithm is a convenient measure of a number. The number 10 raised

to the fourth power is 10,000. The logarithm of 10,000 is then 4, if the logarithm
be written, logio 10,000. Also logio 10 = I, logic 100 = 2, logio 1000 =

3. Like-

wise every number has a logarithm. It is noticed that the logarithm changes very

slowly as compared to the number itself.

f MacKenzie, Phys. Rev.
t 20, 1922, p. 331.



130 AUDIBILITY

in a sensation level may be produced by approximately twice the

minimum perceptible difference in intensity described in the next

section. The range of speech sounds is usually from 40 to 60

decibels, an average whisper four feet away is 20 decibels, a rustle

of leaves in a gentle breeze is 10 decibels, and very loud sound,

almost painful, is about 100 decibels, in each case the number of

decibels referring to the number required to reduce the tone to

the threshold limit.

10.7. Minimum Perceptible Difference in Intensity. The

most comprehensive results of minimum perceptible difference

have been presented by Knudsen * and may be expressed as

follows:

Here SL is the sensational level or the number of units as above

defined required to reduce the tone to the threshold, A is the

minimum audible increment in intensity, and E is the intensity.

AE
If Weber's law above stated were true, -=r would be a constant.

Wien in 1888 first showed that this could not be the case. Knud-

sen now shows that at the same loudness or sensation level, the

ratio is practically independent of frequency, varying only 10%
with frequencies of 100 to 3,200 cycles. Macdonald and Allen f

have recently published data showing a similar variation of

A -U r<
-=r with E.
/i

10.8. Audibility of a Tone Affected by a Second Tone : Mask-

ing Effect. The experiments in this subject at the Bell Tele-

phone Laboratories \ have been very extensive and have an im-

*
Knudsen, Phys. Rev., 21, p. 84, 1923.

t Macdonald and Allen, Phil., May 9, p. 827, 1930.

| Wegel and Lane, Phys. Rev., 23, p. 266, 1924.
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portant bearing upon the theory of hearing. The phenomenon
can be appreciated through a brief study of the results obtained

by using a constantly sounding tone of 1,200 cycles and observing
its masking effect upon other frequencies, the same ear being
used. A definite arbitrary measure for "masking" must be given
in order to express the results quantitatively. The investigators,

Wegel and Lane, have selected the following: If without the

masking tone, the threshold pressure of a given frequency is p\y

and with the masking tone it is />j, then the measure of masking

is In the accompanying Fig. 10.3 the three curves refer to
pi

1

4OO 800 1200 2000 3000 4000

FREQUENCY OF MASKED TONE

FIG. 10.3

the results with three intensities of the tone having a frequency

of 1,200; namely, 160, 1,000, and 10,000 times its minimum

audible intensity. The ordinates are ~ as already described.

Several points are to be noted:

1. There is a decided masking which increases as the fre-

quency of the masking tone is approached.
2. The masking effect increases with the intensity of the mask-

ing tone.

3. At higher intensities the masking occurs as if the additional

tones of 2,400 and 3,600 were present. This indicates that those

tones have been created by the ear itself, and, as will be explained

at a later point, this is actually the case.
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The authors just quoted have utilized the study of masking

in a consideration of the frequency regions on the basilar mem-

brane and their conclusions may be represented in the accom-

panying drawing, Fig. 10.4. As it is not the purpose of this text

to discuss the anatomy of the ear, no explanation will be offered

other than in the figure itself. Those who are not familiar with

the ear are referred to the original article. The results in Fig.

Helicotrtma

10 1S 20 25 S0

DISTANCE FROM OVAL WINDOW IN MILLIMETERS

Distance from oval window (Millimetres)

FIG. 10.4. Characteristic frequency regions on basilar membrane

10.4 should not be regarded as final but only as representing a

stage in the progress of the establishment of a correct theory of

hearing. It may be well to remark that there is at present no

fully accepted theory of hearing. Several recent contributions

to the discussion are contained in the account of a symposium of

the American Acoustical Society in 1929.

10.9. Hearing in the Presence of Noise. It has been re-

peatedly noticed that many people appear to hear better in the

presence of a noise. The term used to describe this phenomenon
is "paracusis." Knudsen and Jones

* have removed much of the

mystery in connection with the apparent better hearing of the

"paracusic" in the presence of a noise. They find that, strictly

speaking, the acuity of hearing is decreased by the presence of a

noise for all persons of normal hearing and for all the partially

deaf. Further, the individuals with impaired hearing of the per-

ceptive f type do not hear as well in the presence of a noise.

* Knudsen and Jones, "The Laryngoscope," 36, p. 623, 1926.

fThe terms "perceptive" and "conductive" are taken from the original paper.
The former evidently refers to the usual means of hearing and the latter to the type
where the vibrations reach the organ of hearing by bone conduction.
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Paracusis is found only in the individual having hearing of a con-

ductive type and usually one having a marked bilateral lesion,

wherein the difficulty is the transmission through the bones of the

ear. And in these cases the phenomenon occurs not because of

increased acuity, but rather because of certain other advantages
inherent in his impairments. For example, his partial deafness

is chiefly in low tones, whereas his acuity is good in the region of

most importance to speech, 1,000 to 2,000 cycles. In the pres-

ence of a low pitched noise, such an individual would enjoy a

relative advantage in listening to conversation, when compared
with the person having normal hearing. For the energy of noise

is usually well below 512 cycles. Another advantage rests in the

fact the lower tones are more important in the masking effect

than the high ones. Hence, in the case of a noise covering a large

range of frequencies, the elimination of the low tones by the indi-

vidual mentioned would result in a noticeable relative advantage
in the presence of such a noise.

10.10. Minimum Time for Tone Perception. The data

available on the minimum time for tone perception are discordant.

Fletcher * states that at 128, 384, and 512 cycles the values of the

time required for the perception of weak tones are those corre-

sponding for 1 2. i, 24.1, and 29.6 cycles, respectively. These

correspond to the time intervals, .0946, .0627, and .0579 seconds.

For tones of medium strength, the time is noticeably reduced.

But the phenomenon is more significant than appears upon the

surface. The minimum time for tone perception may not have

even the same meaning for different individuals. A tone is rec-

ognized as such only when it is identified as within a certain fre*

quency range. With one individual this range may be larger than

it is with another.f

1 o.i i. Minimum Perceptible Difference in Frequency.

For frequencies between 500 and 4,000 the least perceptible dif-

ference in frequency is about 0.3 of one per cent of the frequency,
*
"Speech and Hearing" (D. Van Nostrand Co.), p. 153-

t See Stewart, Journal of the Acoustical Society of America, II, 3, p. 325, 1931.
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/, and is fairly constant. Calling this difference A/, then this

A/
percentage is ~r = 0.003. At 260, 120, and 70, the values are

0.004, 0.006, and 0.009 respectively. These are reported by
Knudsen.* The method was to sound one tone at a time. Just

to what extent the least perceptible difference depends upon the

length of time the tones are heard is not known. It is fairly safe

to opine that this time duration is a factor which should be con-

sidered.

10.12. The Vibrato. The interest of this paragraph is the

audition of the vibrato rather than a report of present detailed

knowledge concerning the vibrato itself. Vibrato and tremulo re-

fer to effects which can be produced by the voice and by some

musical instruments. The former appears to the ear to be a fluc-

tuation of intensity of about 5.5 to 8.5 times per second. It

occurs in the natural singing voice and Metfessel \ states that

the vibrato is a cycle of frequency variation with an average rate

of seven cycles per second and an average extent of a musical

half-tone. The ranges of variation of the number of alterations

of frequency is from 5.5 to 8.5 per second. The range of the

variation of the frequency of the tone is from a tenth to a whole

tone. These results were obtained by tests made with the voices

of over forty artists. A greater variation of frequency and in-

tensity than found with artistic vibratos may be called a tremulo.

Now one of the interesting points concerning the vibrato is that

although the frequency alteration is well within the ability of the

ear to detect under more favorable circumstances, yet here, with

the rapid alteration of about 14 times per second, the ear cannot

detect a change in frequency.! Evidently this is in part caused

by the brevity of the time duration of the tones. Another curi-

ous result is that the change in intensity seems to be marked,

indeed much more so than accountable by a direct intensity

*
Physical Review, XXI, I (1923).

t M. Metfessel, Abstract, Acoustical Society of America, meeting December 13,

1930.

J Tiffin, Joseph, Psychological Monographs, 1931, 14.
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effect. Whether or not this is explained in the nature of the ear

response is not known.

The tremulo is similar to the vibrato except that the variation

in frequency is large enough to be heard. Apparently it presents

no new problem of the kind just described.

10.13. Loudness of Complex Sounds. A study has been

made of the absolute loudness of a complex sound and Steinberg
*

finds that the loudness can be expressed in the form of an equa-
tion the factors in which have been determined.

10.14. Combination Tones. There are two chief combina-

tional tones, called "summation" and "difference" tones. If

two tones, having frequencies of n\ and #2, are sounded, the sum-

mation tone has a frequency (n\ + #2)5 and the difference tone a

frequency (n\ n%). If, on a piano, middle Cor Ca (see Section

14.4) and F* are struck vigorously, the tone F\ can be heard.

This is a difference tone. If the keys FI and C2 are struck, the

summation tone is that practically of A. The reader is referred

to Barton \ for a detailed description of the best method of bring-

ing these tones into evidence.

10.15. Frequencies Introduced by Asymmetry. If a vibrat-

ing body is displaced, it exerts a restoring force. It may be said

that there is symmetry if the magnitude of this force is independ-

ent of the direction of the displacement and dependent only upon
the amount. If there is asymmetry this is not the case, and the

restoring force will change in magnitude if the displacement

changes in sign only. It can be shown % that in such a vibrator

the fundamental will always be accompanied by all the overtones

which are integral multiples of the fundamental. Also, mathe-

matical analysis shows that if the restoring force is made pro-

portional to the square of the displacement, and thus asymmet-

rical, the response will not consist merely of vibrations corre-

*
Steinberg, Phys. Rev., 25, 1925, p. 253.

t Barton, loc. '/., articles 297 to 301.

j Barton, loc. cit. There are many asymmetrical vibrators. With this one,

the restoring force depends upon both the amplitude and its square.
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spending in frequencies to those of the impressed forces. If this

vibrator is set in motion by two forces having frequencies of p
and qy there result vibrations *

having the following frequencies:

Pi $9 (p + ?)> (? ?)> %p and 2y. But the amplitudes of the

four additional tones are of peculiar interest, for they increase

rapidly with increasing amplitudes of the primary vibrations p
and q. The bearing of this conclusion of the assumed case upon
the hearing of combinational tones is quickly understood. The

drumskin of the ear is an asymmetrical vibrator and it is not sur-

prising that, in case frequencies p and q are sounded with suffi-

cient intensity, the summation tone (p + q) and difference tone

(p q) will be heard.

The condition of symmetry is not sufficient to cause a vibrator

to give only that frequency which is impressed upon it. In addi-

tion, the restoring force must be proportional to the displacement.

If the restoring force depends not only upon the first power, but

also upon the cube of the displacement, then the vibrator, with

an impressed force of frequency p will introduce the frequency %p.

10.16. The Ear an Asymmetrical Vibrator. It has been pre-

viously stated that if two tones of different frequencies actuate

an asymmetrical vibrator, there will be produced by the latter

the summation and difference tones. This fact causes the ear

sometimes to misjudge the frequencies present in a complex tone.

Dr. Harvey Fletcher f has studied the criterion for determining
the pitch of a musical tone. He found that if the frequencies,

loo, 200, 300, etc., up to 1,000, each having the same pressure

amplitude, were sounded together and then again with the 100

removed, no difference could be detected by the ear. Even if the

elimination continued leaving only the 800, 900 and 1,000, the

pitch seemed to correspond with 100 vibrations per second. In

fact any three consecutive components gave this same pitch. If

the components 200, 400, 600, 800 and 1,000 were used, the pitch

corresponded to 200 cycles. Any consecutive three of these tones

gave the tone of 200, but weakly.
* The statement as to frequencies represents an approximate solution,

f Fletcher, Physical Review, 23, 1924, p. 427.
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One might conclude that the pitch of a musical tone is always
determined by the common difference in the frequencies of the

harmonics, but this is not correct. The combination 100, 300,

500, 700, 900, did not give a pitch of 200 but sounded more like

a noise, but with the frequency 200 distinctly audible. The fact

that components are multiples of a common difference seems to

give the pitch with certainty.

These illustrations of the asymmetrical character of the ear

lead to the conclusion that the quality of a complex sound as

judged by the ear must depend not only upon the relative ampli-

tudes of the components but also the actual amplitudes. For

the asymmetrical character of the ear is brought into greater

relative prominence by greater amplitudes of vibration. Hence

if a complex sound is made fainter, but with the relative intensi-

ties of the components constant, the ear would notice a difference

in quality. As the sound is made louder, the lower tones would

become increasingly prominent. In this manner a loud-speaker

which may give a faithful reproduction would, if sufficiently loud,

appear to over-emphasize the lower tones. The asymmetrical
nature of the ear introduces a difficult problem into the construc-

tion of acoustical instruments.

10.17. Use of Combinational Tones in the Organ. The use

of a combinational tone in a musical instrument actually occurs

in the pipe organ. An open pipe 16 feet in length will give ap-

proximately 32 vibrations per second. But to give 16 vibrations

per second a pipe 32 feet in length would be required. This is

usually too long to install in the recess set apart for the organ.

The tone is obtained by the combined use of two pipes of 16 ft.

and lof ft. acoustic length, giving 32 and 48 cycles. Thus

there is obtained a combinational tone of 16 cycles. Apparently
such practice is common.

But there is no reason why an organ pipe should be straight.

The reflection at a bend in a pipe is caused by the fact that

the successive wave fronts do not remain parallel and there is a

certain amount of interference which depends upon wave-length.



138 AUDIBILITY

The longer the wave-length, the less the interference and conse-

quently the less the reflection at a bend in a pipe. Also, the

larger the diameter of the pipe, the greater the reflection if the

diameter of the pipe is small in comparison with the wave-length.

This is shown in Fig. 12.4. It is possible, then, to have a pipe
double back upon itself and thus reduce the length it occupies.

This construction is now also utilized in organ building.

10.18. Pressure of Sound Waves. Lord Rayleigh has shown

that a plane wave of sound striking a wall perpendicularly will

exert a constant excess of pressure determined by the formula,

/>= aJB,

wherein p is the excess pressure and E is the energy per unit

volume in the incident wave. This phenomenon has a bearing

upon the preceding discussion, for the amplitude of the resulting

waves when two frequencies of n\ and n* are sounded fluctuates

with a frequency (n\ w2). E in such a wave would fluctuate

with this frequency and hence p also. Such a fluctuating pres-

sure would cause any vibrator to respond with the difference fre-

quency (HI #2). But this pressure proves to be very small.

Computation shows that lE is about one millionth the value of

the pressure of the incident wave, if the latter is one dyne. For

less pressures in the incident wave the fraction is even less. Thus

it is learned that although the difference tone (i 2) does have

an objective existence in the air, yet the ear cannot hear it. It

is usually referred to as a subjective tone. The hearing of the

difference tone really depends upon the asymmetrical vibration

of the ear.

10.19. Intermittent Tones. If a frequency of n vibrations

per second is interrupted u times per second, and if u is smaller

than n
y
a frequency of u per second will be heard. If the ampli-

tude of the n vibrations is varied u times per second, again the

tone u is heard. F. A. Schultze * considers the case theoretically

*
Schultze, Annald. Physik> 26, 7, 1908, p. 217, and Science Abstracts, No. 1657,

1908.
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and shows that there are objective tones present having the fol-

lowing frequencies: p y (p #), (p + ), (p 2u) and (p + lu).

From these may be formed the combinational tones u, 2#, 3^,

etc., and (ip + 2#), (ip + 2), etc. It is obvious that the fre-

quency u may exist on account of the changes in mean pressure

that occur with that frequency and on account of the asymmetry
of the ear.

10.20. Intensity and Pitch of a Blend of Sounds. Two tones

of exactly the same frequency and the same phase at a point will

give there an intensity four times that of one alone, for the am-

plitudes add and the intensity is proportional to the square of

the amplitude. But suppose there are n such tones, then the

intensity would be proportional to n 2
. But only with extraor-

dinary care could such a result be achieved, n violins playing

in an orchestra must give phases at random at the auditor's ear,

even if the frequencies are identical. The late Lord Rayleigh
*

has shown that in such a case the intensity is not proportional

to n 2 but to n. It can also be shown that if there are a number

of tones of nearly the same frequency and of approximately the

same amplitudes, the resulting tone will be judged by the ear as

having a pitch which is an approximate mean of the two extremes.

The hum of a swarm of bees is an illustration.

QUESTIONS
1. What physical phenomenon may sometimes lead to an incorrect

impression of the pitch of the lowest tone present?
2. What frequencies will an asymmetrical vibrator introduce when

a pure tone is sounded?

3. In what case will a sound wave exert an excess of pressure?

4. What personal experiences can be explained by Sabine's work
on loudness?

5. Explain why one tone of a frequency will "carry" farther than

a complex tone of the same total acoustic flow of energy.
6. The frequency stated for least audible pressure, 2,048 cycles, as

indicated in Fig. 10.1 is not in numerical agreement with the second

column of Table V. Show that there is not necessarily a discrep-

ancy.

*
Rayleigh, Scientific Papers t Vol. 3, p. 52.



CHAPTER XI

BINAURAL EFFECTS

1 1. 1. Binaural Intensity Effect. There is no doubt but that

difference of intensities at the ears is a factor, though small, in

the auditor's location of a source of sound. It is the purpose of

this section to state what sense of direction of the source is given

by intensities at the two ears. Stewart and Hovda * discovered

that there was a very precise mathematical
relation between the

ratio of the intensities at the ears and the apparent direction of the

source. If one draws an imaginary plane midway between the

ears and the perpendicular to the line joining them, then the

apparent position of the source in a horizontal plane may be de-

scribed by the angle its direction makes with this median plane.

If this angle be denoted by and the intensities at the ear by I\

and /2, then the technical mathematical statement is

0logj- (u.i)

This states that the angle, 0, between the median plane and the

direction of the sound is proportional to the logarithm f of the

ratio of the intensities at the ears. If /i, the intensity at the

right ear, is the greater, then 6 is measured to the auditor's right

of the median plane. If 7j is the greater, the angle 6 is to the left.

In obtaining the above results the apparatus was arranged so

that the sound involved was a pure tone emitted by a tuning fork

and there was no difference of phase at the ears.

From the data not here reproduced the following conclusions

may be derived:

* Stewart and Hovda, Psych. Review, XXV, No. 3, 1918, p. 142.

t See reference in Section 10.6. In (H.I), the form, logio, could be used,
but the equation would remain true if another number than 10 were used. So
it is left without such a number indicated.

140
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1 i ) Formula ( 1 1 . i ) was found correct for several observers and
for frequencies of 256, 512, and 1,024.

(2) The binaural intensity effect does not account for a hear-

er's ability to locate a source of sound for to produce a certain

apparent in the experiment, a much greater ratio of intensity is

required than can exist in an actual case with the head casting
an intensity shadow for the sound from a distant source.

Later experiments
* were performed with 16 observers and

with frequencies from 200 to 2,000. Four of the observers were

tested at frequencies up to 4,000. These experiments were per-

formed in such a manner that they did not show the accuracy of

equation (n.i), but they did clearly indicate the frequencies at

which the intensity effect did not exist at all. Some of the con-

clusions of these experiments are:

(1) With ten of the sixteen observers, the binaural intensity

effect ceased to exist throughout one or more bands of frequencies.

(When it ceased to exist, the source of sound appeared to remain

directly in front of the observer, though the intensity ratio

changed within wide limits.)

(2) These frequency bands all occurred above 800 cycles and

were of different widths.

(3) In certain frequency regions there appeared to be two

sources of sound, one stationary in front and one moving about

with changes in intensity ratio.

Table VI

*
Stewart, Phys. Rn., VoL XV, No. 5, 1920, p. 430.
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(4) There is a wide variation among individuals in regard to

the above.

Table VI shows the results so far as the absence of the

intensity effect is concerned.

H.2. Binaural Phase Effect. By
"
binaural difference of

phase effect" is meant the alteration of the angular displacement
from the median plane of the apparent source of the fused sound

when varying differences of phase of a given frequency are pre-

sented at the ears and the intensities are kept constant and equal.

This "effect" has been known for a number of years; a review

of the early literature is given in the Physical Review, IX, 1917,

p. 502.

The experiments recorded in the article just cited show clearly

that the angular displacement of the apparent source of the fused

sound or "image" is strictly proportional to the phase difference

at the ears, with, of course, the limiting provision that the linear

relation is true only for a difference of phase, p, less than 180.

(See discussion of phase angle in Section 3.7.) At <f>
= 180 the

image crosses from the maximum angular displacement on one

side of the median plane to that on the other side. The experi-

mental procedure was to ascertain this linear relation between 0,

the angular displacement, and <p, the difference of phase, for a

single frequency. If, as stated, 6 is proportional to <p for any

given frequency, then the interest centers upon the variation of

ip
r- (which is constant at one frequency) with frequency. The

accompanying three curves in Fig. n.i show the results obtained

with three different observers. The circles and dots in the ob-

servations for the upper curve indicate two different observational

methods. The observations for the other two curves are shown

by squares and triangles.

The conclusions * from these curves are the following:
* The binaural phase effect is being actively studied by both psychologists and

physicists, using both sustained and impulsive sounds. It is impractical to present
here all of the important results. While all workers may not be wholly in accord

with the discussion in the text, the author believes these data to be reliable and the

impression conveyed essentially correct. The data have been verified by others.
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(1) There is not a wide variation in individuals.

(2) If these straight lines went through the point
"
0," it could

be stated (not here proved *) that the apparent position of the

source indicated by 8 is dependent only upon the difference in

time of arrival of like phases at the ears. It can be claimed,

therefore, that this conclusion as to time difference is approxi-

mately correct.

500
d.v

FIG. 1 1. 1

1000

(3) A consideration of the computed phase differences at the

ears with the source of sound at any given 6 shows that the above

quantitative measurements fully account for the ability of the

individual to locate the source of sound in the limited region dis-

cussed.

The second of the foregoing conclusions leads to interesting

considerations. If a source is actually placed at an angle 6 from

the median plane, and if it emits several frequencies, all of these

will have the same difference in time of arrival at the ears and

hence, according to the second conclusion above, all would appear

* See "Acoustics," Stewart and Lindsay, p. 229.
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to the auditor to come from the same direction. This is in accord

with experience.

The third conclusion is very significant. It has been shown

above that the binaural intensity effect cannot account for the

ability to locate sounds. It is now shown that the binaural phase
effect can do so in the limited region here discussed. There are

limitations to this conclusion as will now appear.

Measurements of the frequency limit of the phase effect was

made upon 16 observers. The values of frequency above which

no phase effect existed are only approximate and are shown in the

accompanying Table VII. Above each frequency limit there was

no rotation whatever of the apparent source about the head with

changing phase. Only frequencies less than 2,000 cycles were

used.

Table VII

There are two striking indications to be found in the table.

The first is that the frequency limit is approximately the same

for all individuals, and second, that there are exceptional wide

variations from the mean value. The average deviation from the

mean is 155 cycles. Omitting two observers, it is only 1 10 cycles.

This constancy has a distinct bearing upon the conclusion that
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phase difference is the most important factor in localization up
to 1,200 cycles.

Subsequent experiments
* have shown that the phase effect is

not limited to frequencies less than 1,200 cycles. In fact, with

a few selected observers of considerable experience the binaural

phase effect has been found to exist at frequencies of several

thousand cycles. Nevertheless the frequencies below 1,200 cy-

cles are evidently important in localizing ability. Other factors

may become prominent at higher frequencies. This point is dis-

cussed in a later section of this chapter.

Psychologists are familiar with the influence of intensity-dif-

ference upon localization and this phenomenon is subject to gen-

erally accepted principles. But the recognition of a phase differ-

ence at the ears with the two intensities equal means, it would

seem, a response to a different and more intrinsic feature of the

stimulus. The suggestion that we have here to do with a response

to the character of the stimulus will doubtless be regarded with

skepticism, and in fact an attempt has been made by some to

explain the "phase effect" in other terms. Fortunately it has

been possible to get what seems to be conclusive evidence that

any explanation in terms of physical intensities at the ears cannot

be correct. This evidence is direct and readily understood. It

has been shown above that with some individuals there are fre-

quency regions or bands wherein the observers are not influenced

in their localization by variations in the ratio of intensities at the

ears, phase-difference remaining constant. With them, in this

"lapse-region," the apparent source of the fused sound remains

stationary in the median plane when the ratio of intensities is

altered widely. But the significant fact is that with six f of sixteen

observers the "phase effect" is continuous in at least a portion of

this lapse-region. In short, the phase-phenomenon seems to be

independent of the intensity displacement effect. The evidence

may be found in the comparison of Tables VI and VII. For
*
Halverson, American Journal of Psychology, 38, p. 97, 1917. There are also

unpublished results by others.

t The reason for only six is that the lapse-regions were too high to be within

the frequency limit of the phase effect. The phase effect was always entirely

independent of the lapse-region.
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example, note that G. W. S. and G. R. W. have the phase effect

in a region where the intensity effect is entirely lacking.

11.3. Phase Effect with Complex Tones. As shown above,

the phase effect is effectively a difference in time of arrival at the

ears, and hence the angular displacement is independent offre-

quency. This means that, so long as the phase difference of any
overtone does not exceed 180, all the tones will have the same

angular displacement and hence there will be no confusion as to

location. (A confusion in a horizontal semicircle only is being

discussed.) This leads to the utilization of the phase effect.

11.4. Utilization of the Binaural Phase Effect. The binaural

difference of phase effect was utilized during the war for the loca-

tion of submarines and of airplanes. Obviously, if attachments

can be made to the ears which will virtually separate them fur-

ther, then a small rotation of the apparatus will mean a larger

difference in phase at the receivers than at the unaided ears.

Thus a very high accuracy may be obtained. A few observers

seem to locate the source of sound in the rear instead of the front,

but this does not vitiate the method.

11.5. Complexity of Factors in Actual Localization. One

might conclude that, since the only physical factors in a pure tone

of a given frequency are phase and intensity, and since we have

all but eliminated intensity as a factor in localization below i,aoo

cycles, the only important factor left is that of phase difference.

But this cannot be true in the sense that the phase difference is

produced merely by a single source and the diffraction about the

head as a sphere. For there are always present reflecting sur-

faces which are extensive enough to produce images. This is

especially true of frequencies higher than 1,000, having a wave-

length less than 34 cm. Although the effect at the opening of

the external meatus is still expressible in phase and intensity, yet,

in contrast to the case of a simple source, we have, in general, the

equivalent of several sources, with most of them on the same side

of the median plane as the source. There would result from these
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reflections an apparently diffused source of sound instead of the

original source only. Consequently the observer could distin-

guish between a location on the right and left side of the median

plane. Thus, assuming that phase difference is the most impor-
tant factor in localization, it by no means follows that the case is

as simple or needs to be as simple as that of a source and a rigid

sphere with the two ears located diametrically thereon. The

complexity of conditions involving reflection gives the single fac-

tor, phase difference, a greater opportunity to secure accurate

location than did the simple theoretical case. Doubtless there

are other factors which enter into the localization of a pure tone.

There are at least two additional ones in the case of a complex

tone; they are the difference in quality at the two ears produced

by diffraction, and the variation in the quality of a sound that

depends upon the location of the source in the particular environ-

ment; an example of the latter is one's ability, in familiar sur-

roundings in a home, to tell from which room a voice comes.

A suggestion has been made by Hartley and Fry
* that the

observer may have an appreciation of the distance of the source.

Observers, however, agree that with pure tones no such appre-

ciation exists.

It should be noted that the discussion in this chapter of locali-

zation of sound is limited to the apparent position of the source

in a horizontal plane with not more than 90. The whole prob-
lem of localization has therefore been merely touched upon.

1 1.6. Demonstration of Binaural Phase Effect. If two

tuning forks of almost the same frequency, producing a "beat"

say every five to ten seconds, are held one to each ear, the hearer

will observe the phase effect. The phantom source of sound,

which seems to be a single source, moves continuously about and

in front of the head in an approximately circular horizontal path,

but does not complete the circle. Having reached a point almost

directly opposite the ear it moves abruptly from one side to the

other but continuously across in front of the observer.

Physical Review, 13, 1919.
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11.7. Binaural Beats. There is an interesting phenomenon
that may easily be observed. If two beating tuning forks are

held one to each ear, the beats can be heard. In listening to two

beating tones with one ear the combined intensity varies from a

maximum to zero. With binaural beats the minimum intensity

is distinctly not zero. Moreover, if one listens closely, he can

hear two additional swells of intensity, one just before and one

just after the minimum intensity. These additional or secondary

maxima are present only if the beat period exceeds at least one

second. The phenomena involved in binaural beats will, when

fully investigated,* doubtless increase the understanding of au-

dition.

QUESTIONS
1. Why cannot the phase effect be explained as an intensity effect?

2. Why cannot phase fully account for localization? Why cannot

the phase and the intensity effect together fully account for it?

3. From the data in Fig. n.i, compute the time difference that

can be detected, assuming that one may notice the variation of 6 from
oif0= 2.

* For a report on binaural beats with a record of new phenomena see Stewart,

Physical Review, IX, No. 6, June 1917, p. 502, 509 and 514. The most interesting
conclusion in these papers is, that the evidence points to the existence of a second

and a different organ of hearing, the saccule. Recent experiments verify this

conclusion. See also a later discussion by Lane, Physical Review, 26, p. 401,

1925, and by Stewart, Journal of Acoustical Society of America, April, 1930.
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ACOUSTIC TRANSMISSION

1 2. i. Transmission of Energy from One Medium to Another.

In previous chapters there have been discussed several cases of

transmission where the medium remained the same and yet, be-

cause of the changes in the confinement of that medium, the

energy transmitted was not 100 per cent. In Section 5.7 it was

found that there was a reflection in a conduit at any sudden

change in area, indeed, also when a conduit opened out into the

unconfined atmosphere. In Section 6.9 the reflection at the open
end of megaphones was mentioned. But the transmission of

sound from a gas to a solid and from one solid to another involves

new considerations. The physical factors entering the question

of such transmission from one medium to another will now be

described.

In the first chapter it was made evident that the transmission

of a sound wave depends upon the elasticity of the medium and

also upon the density. The former quality requires that the dis-

placement return to zero value; it gives a return force which is

essential in the process. The density indicates the existence of

mass and hence of the requirement of time to produce a displace-

ment. Both elasticity and density are requisite. Without either

the wave would not be produced. It is therefore to be observed

that in the value of the velocity of a sound wave in a fluid there

are involved several physical factors. It may then not be sur-

prising that in a plane wave, incident perpendicularly at a plane

interface between two media, the percentage of energy in the

transmitted wave depends upon the product of tlie density and

the wave velocity in each medium. This product is called the

"acoustic resistance," the second word being used also in elec-

tricity, but not in a closely analogous manner. Consider the

plane interface, one medium being on the left and one on the

149
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right. Let the incident wave come from the left. Of the energy

flowing to the right, part will be reflected at the interface and the

remainder will be transmitted into the second medium. It is for-

tunate that the actual amount transmitted can be determined by

the application of the following simple expression:
*

Transmitted flow of energy _ qr

Incident flow of energy (r + i)
2

Here r is an abbreviation for the ratio of the acoustic resistance

in the second medium to that in the first.

It is also an important fact that this discussion can be ex-

tended to include solids if one limits the consideration to longi-

tudinal waves. This would include the passage of sound from

air to water and from water through a ship's hull.f It would be

applicable to the transmission of sound from air to the ground
and vice versa. But one must be warned that it is only applicable

where the second medium does not act like a drum head or a dia-

phragm. In fact, in partitions and floors, diaphragm action is

nearly the correct description, for it is found that mass is a very

important factor. The actual sound entering a wall, treated as

a medium as in this chapter, would be small indeed and this does

not agree with the amount of transmission found in experience.

The following table gives the value of the acoustic resistance

for several substances: J

* For the derivation see Stewart and Lindsay,
"
Acoustics" (D. Van Nostrand),

Chapter IV.

f Not precisely true, for the diaphragm action discussed in this section may not

be disregarded.

J See Appendix I of Stewart and Lindsay, "Acoustics," p. 327.
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As an example, if one applies the formula to the transmission

from air to water, a very small fraction is found.

12.2. Transmission in Architectural Acoustics.
1" From the

foregoing one might correctly conclude that the structure of build-

ings to avoid transmission of sound from one room to another is

not a very simple matter. Interesting experiments have been

made with partitions in order to find the most economical con-

struction that will give satisfactory acoustic insulation. The

lighter the structure, such as in a home, the more difficult becomes

the problem. For in a building requiring massive walls and floors,

the inertia prevents diaphragm action. It is to be borne in mind

that to reduce the sound transmission through a floor or partition

there are chiefly two methods, absorption and rigid or massive

construction. The absorption can be produced by the nature of

the material itself or of its surface. This will prevent, through
surface absorption, the transmission of sound, but the absorption
on the interior is not so effective if the wall is light enough to

vibrate as a diaphragm. Both mass and rigidity of a wall or floor

will prevent transmission. An illustration of the use of absorp-

tion and rigidity is as follows. An ordinary wood floor in a home

consists of the joists carrying two layers of flooring, the top one

being the finished floor. Underneath the joists are the lath and

the plaster. Not only will such a floor vibrate as a whole, but

even the areas of flooring from one joint to another will have

additional vibration. One way of producing a serious reduction

of the transmission is to lay over the first flooring an absorbing

material of perhaps an inch in thickness. Upon this, and sepa-

rated by perhaps six inches, are laid 2. X 2's but without nailing.

Then the finish floor is nailed thereto. Thus the finish flooring

floats without any solid connection with the floor structure. The

effect is very marked.

12.3. Machinery Noises. Noises from machinery may be

prevented by the removal of the cause, by absorption and by
* In this country there is an organization of physicists, acoustic engineers,

architects, and construction engineers, the Acoustical Society of America, that is

actively interested in all problems relating to architectural acoustics.
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preventing the flow of energy from the machine to surrounding

supports. Attention here will be devoted especially to the last

method for the others are more obviously applicable. Assume

that the desire is to prevent the 120 cycle hum of a motor from

being conveyed to a support such as a table or floor. Everyone

knows that a soft pad placed under the motor will be quite effect-

ive in preventing the transmission. This is not merely because

of the absorption of the pad but also because of its elasticity.

One can substitute a number of small springs and get a good effect

also. This is because the springs cause a reflection of the energy,

explained briefly as follows. The presence of the springs will

allow the motor base to vibrate rather freely. There will then

exist a condition much like that at the open end of a pipe, previ-

ously discussed. In other words the condition is one of a reflec-

tion. This will be particularly true if the springs are light and

numerous, rather than heavy and few. The mathematical treat-

ment gives a much better explanation,* but the chief point to be

realized is that we are here dealing with a case of reflection of

energy, rather than of absorption. Attention of engineers to the

prevention of machinery noises is rapidly increasing.!

12.4. Case of Three Media. Assume that we are dealing

not with the transmission from medium one to medium two, but

also from medium two to medium three, retaining perpendicular

incidence of the sound and parallelism of the two planes separating

the media. Then, if this second medium has a length such that

resonance is obtained through the reflection at the two interfaces,

there is a curious result. The transmission of energy from the

first to the third medium is then of the same magnitude as would

exist if the second medium were absent. Usually in order to

ascertain the energy transmitted in the third medium it is neces-

sary to use a complicated formula.

*
Kimball, Journal of the Acoustical Society , II, a, 197, 1930.

f See Slocum, "Noise and Vibration Engineering," D. Van Nostrand Company,
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12.5. Constrictions and Expansion in Conduits. (i) Inten-

sity Effect. It has been explained in a previous chapter that if

the area in a tubular conduit is changed at any point, there is not

100% transmission, but a reflection. If there are two changes in

area as illustrated in the accompanying Fig. 12.1, then there are

FIG. 1 2. i

reflections at both junctions where the areas are altered. It is

assumed that the diameters of conduits i, 2 and 3 are small in

comparison with a wave-length. If the area of the first tube is

o

Siy of the second *?2>
and of the third 3, and if we put mi = -r-

01
o

and m% =
, then the following conclusions may be drawn:

02

(a) If the length of the tube area Sz is very short compared
with the wave-length, then the ratio of transmitted to incident

energy depends only upon the first and third tubes and may be

expressed by

+ i)
2

or

(b) If the tube S% has a length equal to one-half wave-length,

then there is resonance set up in Si and the transmitted wave is

the same as if 2 were not present. This is also true if oYs length

is any integral number of half-wave-lengths.

(c) The ratio of transmitted to incident energy is known for

any length of St.

The reader is now enabled to understand why it is difficult to

diminish transmission in a conduit by a constriction which is very

short in length. An example would be the insertion of a dia-
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phragm across the tube with a small hole in it. According to

item (a) just stated, since 1 and S3 would be equal, the entire

incident energy would be transmitted. Of course viscosity and

the assumption of plane waves in the theory would prevent the

accuracy of this statement, but its truth is sufficiently approxi-

mate as a practical guide. If one attempts to pinch a rubber

tube conduit and thus to reduce the intensity transmitted, prac-

tically no change in intensity will occur until the channel has been

made very small. The ear canals may be nearly closed with im-

pacted wax but no deafness will be noted until there is practically

complete closure.

(2) Phase Effect. At first thought it might seem that, al-

though a constriction or expansion will change the intensity of

flow of energy in a conduit, yet there would be no change of phase
other than that which would ordinarily occur in the same length

of tubing of constant diameter. But this is not the case, for there

are repeated reflections at the ends of the constricted (or ex-

panded) length and the transmitted wave is made up of not merely
a portion of one wave incident at the 3 end of the constriction,

but of a large number. Its phase cannot be unmodified by this

complexity. The theory for this change is known.*

12.6. The Stethoscope. Consider an ideal stethoscope as

shown in the accompanying figure. Medium i is a solid, liquid

or any medium. The medium in 2 and 3 is air. The query
arises as to the transmission of energy from medium i into the

small tube. The theory is known f and the following conclusions

may be drawn from it:

i. If the thickness of the lamina 2 is very small in comparison
with a wave-length, the ratio of the transmitted energy to the

energy incident in i is

(n + "*2)
2>

* Sec Stewart and Lindsay, Acoustics, p. 78.

f Brillie, Le Genie CiwY, 75, 223, 1919.
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FIG. 12.2

where r\ is the ratio of the acoustic resistances of medium 2 to

medium i and m* is the ratio of the area of 3 to the area of 2.

2. If one considers the transmission from water to air, and

considers the thickness of medium 2, he will find that this length

can readily be adjusted

so that the energy of

sound in tube 3 is much

greater than the energy

which would pass from

the given area of water

to air. Moreover, the

stethoscope tube permits

all of the energy in tube

3 to flow into the ear,

whereas without the

stethoscope only a small part of the flow of energy from the given

area of water would enter the ear. When the ear is pressed

against medium i, it is obvious that the ear becomes a stethoscope.

12.7. Non-reflecting Conduit Junctions. It is impossible to

change the area of a conduit without introducing reflection. In

quantitative measurements this is a serious consideration. In

order to avoid reflection it is customary to connect the two differ-

ent areas by means of a cone of very gradual slope.* The longer

the cone, i.e., the less its slope, the less the reflections at the ends.

Also, since the reflections at the ends of the cone introduce the

possibility of resonance, all wave-lengths will not be transmitted

equally well. Only at resonance will the ratio of transmitted to

incident energy be unity. In many cases, the introduction of felt

in the transmitting tubes will cut down resonance and prevent

any material effect of reflected waves upon the source and thus

will make possible satisfactory quantitative measurements of the

relative intensities of different frequencies.

12.8. Velocity of Sound in Pipes. There are two physical

phenomena which enter into sound transmission in pipes but

* Sec also Section 5.7.
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which are not important in the open air. The viscosity of a gas

is made prominent in a pipe because of the presence of the sta-

tionary wall which necessitates slippage in the gas itself. More-

over, a gas is heated by compression and cooled by rarefaction.

The exchange of heat between the wall and the gas is the second

factor. The result of both of these factors is to diminish the

sound intensity and also the sound velocity. It is found experi-

mentally that the percentage decrease in the velocity of sound in

a pipe is given by the following expression.

wherein r is the radius of the pipe in mms., n is the frequency
and c a number which varies with the diameter and the material

of the pipe. Schulze * in 1904 found experimentally that c varied

from .0075 to 0.025.

12.9. Decay of Intensity in Pipes. The decay of intensity

of sound in transmission through pipes has been only slightly

investigated. It is well-known that the percentage of decay per
unit length should be the same throughout the pipe and should

be dependent upon the frequency, the diameter and the material

of the pipe. H. Brillie f presents the following data as having

been taken by Messrs. Clerget and Dessus in France. The

lengths of pipe given are those required to reduce the sound in-

tensity to 50% of its initial value. The frequency of the sound

used in these experiments is not given by Brillie.

The accompanying Fig. 12.3 graphically exhibits the data ob-

*
Schulze, Ann. d. Physik, 13, p. 1060 (1904).

t Brillie, Le Genie Ciw7, 75, p. 224, 1919.



DECAY OF INTENSITY IN PIPES 157

tained with transmission through speaking tubes by Eckhardt,
Chrisler and Evans.*

The loss in transmission depends importantly upon the diam-

eter of the tube. Of course the transmission in a 2o-foot tube

i.

60

40

TRANSMISSION OF STRAIGHT
TUBES PER 10 FOOT SECTION

"4 BRASS

BRASS

600 1200 1800 2400

FREQUENCY
3000

Fio. 12.3

would be the square of the values shown. Thus a 2-inch brass

tube would transmit 80% of a tone of 300 cycles in a lo-foot

tube, 64% in a 2o-foot tube, and 51% in a 30-6001 tube. Thus

in long tubes the differences in Fig. 12.3 are accentuated. The

3000600 1200 1800 2400

FREQUENCY

Fio. 12.4

loss in transmission also depends upon the material of the pipe.

But it is not clear whether the difference is caused by friction or

by absorption due to the lack of perfect rigidity in the pipe.

The passage of sound around a bend in a pipe has already been

*
Technological Paper of the Bureau of Standards No. 333, p. 163, Vol. ai,

1926-27.
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mentioned in Section 10.18. The authors just mentioned have

determined also the effect of 90 bends. The results are shown

in Fig. 12.4. There is an unexplained peculiarity with high fre-

quencies with a pipe of large diameter.

QUESTIONS
1. According to (2) of Section 12.6, how does the excess pressure

in the tube containing medium 3 compare with the pressure which
would be obtained if the tube containing 2 were extended indefinitely
to the right and the former tube omitted?

2. Explain the apparent contradiction involved in the following:

According to Section 12.1, the transmission of sound energy from

medium i to medium 2 of Fig. 12.2 depends upon the ratio of the

acoustic resistance in the second medium to that in the first. Then
the attachment of the tube containing 3 could not increase the flow

of energy from I to 2, and hence the energy computed as in 12.6 can-

not be correct.

3. Compare Sections 12.7 and 5.7. For a wave-length long com-

pared to the abrupt changes proposed in 5.7, there would be little

difference in result between the long cone and the approximation to

it by a succession of short cylindrical tubes connected by abrupt
changes in area. From this fact what would you conclude concerning
the reflection on the walls of the cone as well as at the ends?

4. Assume a conduit had walls that were thin and elastic so that

they would be set in vibration by the sound w^ave. Can you venture
a reason why such walls would modify the velocity of the sound wave
in the tube?



CHAPTER XIII

SELECTIVE TRANSMISSION

13.1. Interference Tube of Herschel and Quincke.* In

transmitting sound through a tube or conduit, it is often desirable

to eliminate certain frequency regions and this chapter describes

the methods so far devised to produce such a selection. Consider

the transmission of sound, from left to right, through the double

tube shown in the accompanying Fig. 13.1.

FIG. 13.1

As already noted in Chapter V, if the area of cross-section of

tube AT) is twice that of either DBE or DCE, then a wave passing

from A to D will suffer no reflection at D but will divide equally

and pass on to E. IfDBE and DCE are alike in length and area,

and if EF has the same diameter as ADy the combined wave at E
will pass on through EF without reflection at E because there is

no change in condition. But if DBE is, for a given frequency,

one-half wave-length longer than DCE, then the two waves will

meet at E out of phase. When the pressure of one is positive

the other will be equal and negative, but the displacements will

unite favorably for a positive displacement of one is the same

actual direction as the negative displacement of the other. The

pressures neutralize, but the displacements add. There can be

no forward wave in EF for there is no pressure to produce it.

* Sec Rayleigh's "Theory of Sound/' Vol. II, pp. 64, 65 and 210.

159
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The energy cannot be destroyed by interference; the two waves

proceed in their journeys around the loop through C and B and

unite at D. Since the difference in paths is now zero, the pres-

sures are in phase and the waves proceed from D to A. Thus,

assuming the conditions specified, there will be no transmission

of the energy through EF. If the sound entering A is not com-

posed of a single frequency but is complex, that frequency for

which the difference in path is one-half wave-length will be elimi-

nated from transmission.

But the above explanation, although apparently satisfactory

to physicists for almost a century (from 1833 to 1928 *), is in error

in the inference that elimination will occur only for frequencies

which are opposite in phase after passing over the paths DBE
and DCE. The complete theory of the Herschel and Quincke
tube shows that there are other frequencies, in fact, from two to

three times as many, which will fail in transmission through EF.

The secret of their appearance rests in the fact that, in general,

the history of a sound wave leaving D is not simply passage from

D to by the two paths. One can see that the wave travelling

by the path DCE will divide at E and part go out through EF,

part through B back to D where it will again divide and part will

be reflected back through C to D, etc. At these division points

there will be in general a change of phase with the reflected waves.

It is obvious that one cannot actually trace the paths of the waves

in intensity and phase in the general case for they will not be

limited by one circuit about the loop. Thus it becomes necessary

to resort to mathematical methods of stating the conditions which

must exist at D and . When this is done and the equations

solved, the additional eliminated frequencies are discovered.

They are found to depend upon the sum of the lengths of the two

branches rather than upon their difference. There is zero trans-

mission when the sum of these lengths is an integral number of

wave-lengths, provided that at the same time the difference of

these lengths is not an integral number of wave-lengths. This is

*
Stewart, Phys. Rtv. t 31, 4, 696, 1928, or Stewart and Lindsay, "Acoustics,"

p. 90.
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an interesting case of the advantage of mathematical methods.

Quincke has made use of a modification which is more simple
in construction. The wave enters at A

y Fig. 13.2, and either

passes out at F or experiences what is equivalent to a reflection

at D, for there is no opportunity for the energy to be disposed of

otherwise. If the frequency corresponds to the natural period of

vibration of the tube DC, then this tube will resonate. As noted

in a previous chapter at reso-

nance frequency the incoming and ^ ^ p

outgoing waves in such a closed

tube agree in displacement at the

open end, but have pressures

that are approximately equal and

opposite, forming a "loop" at c

the end. If this occurs, there is
IG '

approximately no pressure to produce transmission out through
DF. Thus the wave of this frequency is eliminated from trans-

mission. Since the elimination is caused by resonance, the shape
of the tube DC is inconsequential, if the elimination of this one

frequency only is considered.

But a more detailed description of the action in Fig. 13.2 will

make the phenomenon clearer. Consider the number of possible

waves involved. There is the flow of energy from A to D, which

is wave one. There are the two waves from wave one, one enter-

ing DC described as two, and one passing on toward F, described

as wave three. (For simplicity let us regard the reflection in pass-

ing into and out of DC as nil. We are not so much interested in

an accuracy of treatment as in a further helpful description.)

There is one wave from the tube DC which will pass partly to the

left toward A and partly to the right toward F. Denote this

wave in the tube by six, the one passing toward A by four, and

the one toward F by five. We then see that there are two waves

to the right, toward F, numbered three and five. As hereinbefore

noted, time is required to build up resonance, and, if there is no

viscosity, there is only the limiting case of vibration in DC where

the energy escaping from the resonator is equal to that entering
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from the source. The details are as follows. Resonance in DC
will build up until five is as great as three. But five is opposite

in phase to three because it has traversed a half wave-length fur-

ther. Wave five will not build up any further because at equality

of three and five the total flow to the right becomes nil. Then

the total flow in four must become equal to the flow in one. In

other words, wave one is essentially reflected. This explanation

gives a better insight into the phenomenon, though we have in-

correctly neglected the reflections occurring in passing in and out

FIG. 13.3

of DC and the alteration of phases involved at this point. Even
with these reflections we will never have any greater number of

waves than those specified, though they arise from more causes

than described. With resonance without viscosity one sees that

wave three may equal wave five and wave four may equal wave
one.

As illustrations of possible shapes, two arrangements are shown
in Fig. 13.3. But, as shown below, the shape of this tube does

determine the extent of the partial elimination of neighboring

frequencies.

An investigation of the theory (see the following section)

states that if it were not for viscosity, the elimination of the



INTERFERENCE TUBE 163

selected frequency would be complete and independent of the di-

ameter of this side branch. In practice one branch will eliminate

all but a fraction of the incident energy. Consequently more

than one branch is sometimes essential to the production of the

desired reduction in intensity. Krueger
* has studied the use of

such branch tubes and has concluded that the extent of the elimi-

nation depends upon the point of attachment of the side tube.

He used a fork resonator and found that the elimination was the

greatest when the point of attachment to the conduit was an inte-

gral number of half wave-lengths from the rear wall of the reso-

nator and the least when the distance was an odd number of

quarter wave-lengths. Undoubtedly these conclusions indicate

33.2* 33.2 33.2

F D C B A

FlG. 13.4

the influence of the reflected wave on the source, but a discussion

of the matter should be based upon additional experiments. It

is not difficult, however, to understand that there is a desirable

separation of side tubes when using more than one. As an illus-

tration, attention is directed to Krueger's final design, shown in

Fig. 13.4. It was constructed to eliminate a frequency of 256

cycles or an integral number of times this frequency.

Side tubes A, C and F will assist in eliminating 256 cycles per

second if each is adjusted to have a length of one quarter of the

wave length; A^ B
y C, D and -F, 512 cycles if correspondingly

adjusted; and similarly A> 5, C, Z), E and F, 1,024 cycles. The

object of the spacing is to cause the reflected waves to be in agree-

ment. Consider the fact that the incident and reflected waves

*
Krueger, Philos. SW., 17, 1901, p. 223.
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at each opening are opposite in the phase of the displacement.

Assume a wave incident at the right in Fig. 13.4. If the distance

B to A is one-half wave-length, then the phases of the waves re-

flected at the two points are opposite (for the incident waves are

opposite in phase). But, since the reflected wave must travel

from B to A
,
a half-wave-length, it will there be in the same phase

with the reflected wave at A. Consequently there will be no

interference in the reflected waves, a fundamental condition for

the maximum elimination.

13.2. Theory of a Closed Tube as a Side Branch. A the-

oretical investigation by Stewart * considers a single side tube,

and only the incident and transmitted waves. The wave reflected

l*0\ | i i i i i i UZ3T1 at the opening of the side

tube is assumed not to

affect the source. This

condition can be approx-
imated by having a

considerable amount of

"damping," e.g., hair-

felt, distributed along

the conduit between the

source and the branch

tube. Also it is assumed

that the transmitted

wave is not reflected at

the distant terminus of

the tube. This ideal con-

dition can be approxi-

mated by again inserting

damping in the conduit

between the side tube

and the distant terminus.

Obviously the damping will greatly dissipate the original energy,

but the arrangement will permit a comparison of the theory of

*
"Acoustics," Stewart and Lindsay, p. 116.
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the action and the experimental results. The comparison is

found in Fig. 13.5. The full line curve gives the theoretical

values * of the square root of the transmission.

13.3. Helmholtz Resonator as a Side Branch. Here the the-

ory and experiment bring rather unexpected results for the re-

sponse of such a resonator in the open is "sharp," that is, fre-

quencies other than the critical one produce very little vibration.

LO

.6

-

B 3 456789 10

FREQUENY IN CYCLES PER SECOND -r 100
20 30

FIG. 13.6

* The theory shows that the ratio of the transmitted energy to the incident

energy is

where <r is the area of the branch tube, S the area of the conduit, k is 2ir divided by
the wave-length and / is the length of the side branch. At the critical frequency
tan kl = oo

, and the transmission is zero and independent of the areas of the tubes.

The function
"
tan kl" is a short expression used in trigonometry for indicating a

ITT!
certain value that depends upon the angle kl or , where X is the wave-length.

A

The formula is given here merely that the reader may see that a result complicated

physically may have a simple mathematical expression.
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The theoretical * and experimental results are shown in Fig. 13.6,

the former by the graph and the latter by the circles.

It is to be observed that the transmission is affected very

markedly over a wide range of frequencies. The Helmholtz reso-

nator would not be efficient as a Quincke tube if only one fre-

quency or a narrow range is to be eliminated.

13.4. Action of an Orifice. In this connection the action of

an orifice in a conduit is interesting. It might be supposed that

the sound escapes from the orifice and thus diminishes transmis-

sion. But this is not the correct picture. Figure 13.7 shows a series

of curves taken with orifices of four different diameters. The full

line curve is the theory t and the designated points represent the

square root of the measured values of the transmission. The

ordinates on the right give the values in decibels. Curve 4 does

not agree with experimental points. Curve 5 is the theoretical

curve if CQ be arbitrarily changed from its computed value 0.582

to 0.74.

A point of interest is that the orifice affects the low frequen-

cies the most. However, this conclusion cannot be extended to

indefinitely high frequencies. Two points which can be seen only

through theoretical considerations are that the cause of the de-

creased transmission is more importantly the reaction of the mass

in the orifice and that the viscosity of the orifice is relatively

unimportant. The former point needs explanation. Of course

there is a radiation from the hole outward and this energy is lost.

But because of the action of the inertia of the mass of the gas in

the hole, the reflected wave, similar to that discussed earlier in

this chapter, is very much greater than the radiated wave and

consequently is the chief factor in the resulting decrease of trans-

* The theory, Stewart and Lindsay, "Acoustics," p. 116, shows that the ratio

of transmitted to incident energy is < I -f- I 4*$* (
J

I i . Here the sym-

bols not defined in the foregoing are c the "conductivity" of the neck of the

resonator and V its volume.

fThe theory, Stewart and Lindsay, "Acoustics," p. 120, is too complicated
for a brief footnote.
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mission. However the relative importance of the radiated wave
increases with frequency. The above interesting points can be

applied to a musical instrument like a flute, but not without addi-

tional discussion, for here we have standing waves.

It has just been stated that the reaction of the mass is very

important, indeed more so than the radiation from the orifice.
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Again the mathematical theory is the only adequate description,

although one may perhaps wisely attempt a further discussion in

language. In the early chapters the transmission of sound was

seen to be possible because a medium possesses inertia (or mass)

and elasticity (or the ability to return to the original position).

In a tube or conduit having a constant cross-section there is no

reflection backward. The reason is that these two qualities,

inertia and elasticity, are the same throughout. If one can imag-
ine the air losing its elasticity at a certain point, then there would
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be no pressure there and there would be reflection at that place

approximately as at the open end of a pipe. In short, were the

medium at any point along the tube to lose its elasticity and have

inertia only, there would be reflection. Now an orifice acts very
much like a medium having inertia only. Indeed, in the Helm-

holtz resonator, the orifice has already been assumed to have

inertia only. This was because it led into a large volume, the

elastic action of which was much more important. The experi-

ment with the Helmholtz resonator illustrates that the orifice,

although effectively so short, but opening out into space, may act

as if it possesses inertia only. Thus the reflection may prove to

be important and the transmission through it is small in compari-
son. Experimentally (and theoretically also) the radiation is not

the important element. In fact, when one raises a key on the

flute or clarinet it is not primarily for the purpose of allowing

energy to escape, but rather to cause reflection with change of

pressure phase. More concerning the action of such instruments

will be given in Chapter XV. What is here stated is but one

aspect in a very complex acoustic condition in such instruments.

13.5. Acoustic Wave Filters. A very striking and effective

means of eliminating specific ranges of frequencies has been

found * in the acoustic wave filter. Its detailed description is

beyond the scope of this presentation, but certain points of prac-

tical interest will be considered. The construction of three types

of filters is shown in Fig. 13.8.

Type A consists of a series of Helmholtz resonators distributed

at equal distances along a conduit, Type B of orifices similarly

distributed, the side walls being extended to increase the inertia

of the orifices, and Type C of the combination of the two pre-

ceding types. The characteristic curves of transmission are

shown in Fig. 13.9, the letters corresponding to the types.

Type A is a low-frequency pass, Type E a high-frequency pass,

* See Stewart, Physical Review, 20, 1922, p. 528; 22, 1923, p. 502; 23, 1924,

p. 520; and Jl. of Opt. Soc., 9, 1924, p. 583; and Hall, Phys. Rev., 23, 1924, p. 116;

and Peacock, Phys. Rev., 23, 1924, p. 525. Or see "Acoustics," Stewart and Lind-

say, Chapter VII.
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and Type C a single-band pass. The remarkable property of

these filters is an almost total elimination of transmission in the

attenuated frequency regions.

~1
TYPE B

r

IP P
TYPE C

Fio. 13.8

There can be a vibration of a medium to and fro without any
transmission of power. For example, consider a standing wave

in a tube of infinite extension. Place walls across the tube at

FREQUENCY

Fio. 13.9

two displacement nodes, not necessarily adjacent. The vibration

would continue in this closed space indefinitely, were it not for

the dissipation of energy caused by viscosity and absorption of
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the walls. A series of such closed spaces could be placed along
the tube. One would then witness an oscillatory motion or vibra-

tion in each* compartment, but no transmission of energy. This

is not analogous to the wave filter but is introduced to show the

possibility of no transmission of energy. Now theory shows that

in the acoustic wave filter there is a region of frequencies where

there is a vibratory motion in each "section" or space between

dashed lines in Type A of Fig. 13.8, without a flow of energy from

one to the other and with an amplitude of vibration constantly

decreasing from section to section in the direction of the attempted
transmission. This is the phenomenon in the non-pass region of

frequencies.

If one wishes to set a pendulum in vibration by communi-

cating energy throughout its vibration, the effort must be prop-

erly timed, that is, the applied force must have a certain phase
relation to the movement. In a similar manner in the acoustic

wave filter, it is possible to have a phase relation between pressure

and particle velocity such that energy will be transmitted. Thus

theory shows the possibility of a non-attenuated transmission

region of frequencies in the acoustic wave filter.

From these two analogies the possibility of an acoustic wave

filter having attenuated regions and non-attenuated region is sug-

gested. Although this discussion does not consider the actual

theory of the acoustic wave filter, enough has been said to indicate

that the acoustic wave filter does not dissipate energy, but reflects

it, thus refusing transmission.

13.6. Fictitious " Nodes." The discussion in the preceding

paragraphs makes this a convenient point to mention the absence

of ideal displacement nodes in the stationary waves occurring in

practice. No energy could be transmitted through such an ideal

node. For, although here is a "loop" of pressure and ample
variation from the mean pressure to do work, yet there is no mo-

tion of the medium and without movement a force cannot do

work. In the case of standing waves in an open organ pipe, there

is a flow of energy out of the open end. Thus there must be a
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flow from the mouth to this end. With a closed pipe, all the

energy issues from the mouth, but even in this case the displace-

ment nodes in the air column are not strictly stationary, for there

is a loss of energy in the wave travelling along the tube. This

loss occurs because the air next to the pipe remains stationary and

a friction loss is introduced. Then, too, wave energy is commu-

nicated to the walls of the pipe. The wave travelling from the

mouth to the end of the pipe thereby diminishes slightly in am-

plitude with distance of travel. The same sort of diminution

occurs as the wave returns. Of course similar losses occur in the

open pipe as well. From what has been stated, none of these

cases can have ideal displacement nodes. This explanation of the

existence of imperfect "nodes" must be modified by the statement

that the viscosity loss must enter through the actual particle

velocity of the resultant wave, rather than in the particle velocity

which each wave, forward and back, would have if existing alone.

QUESTIONS
1. Show that for waves returning from E to D of Fig. 13.1, the

displacements are favorable to transmission in DA, but unfavorable

to transmission again in the branches, DB and DC, provided the dif-

ference in the lengths of the branches is one-half wave-length.
2. How would the introduction of viscosity affect the considera-

tion of the divided tubes shown in Fig. 13.1 ?

3. What is the reason that the Quincke tube does not give zero

transmission at the critical frequency?
4. Why does the presence of a mere mass of gas in the orifice pre-

vent a serious amount of dissipation of energy out through the orifice?

5. In both Figs. 13.5 and 13.6 the effects of the resonators are

not as sharp as would be expected from their response in the open.
Can you suggest a possible reason?

6. Why might one expect that a
"
large

'*

orifice would give a result

not in conformity with theory as in Fig. 13.7?



CHAPTER XIV

MUSICAL SCALES

14.1. The Diatonic Scale. There are a number of different

musical scales employed in the world, but western countries use

chiefly the one to be described.

Several reasons exist for expressing the relation between the

frequencies of two tones not as a frequency difference but as a

frequency ratio. It is a fact that to us the most pleasing combi-

nation of two tones is one which the frequency ratio is expressible

by two integers neither of which is large. Thus what is called

the octave has a frequency ratio of 2 : i. The manner in which

the range of frequencies between a note and its octave is divided

determines the nature of the scale. Our scale consists of eight

notes, the ratios of the frequencies to the first or "tonic" being

as follows:

It will be seen at once that the ratios of

C, ,
and G

F, A, and c
'

G, By and d1

are all 4 : 5 : 6, which is a major chord. The notes of E
y G, B

have the ratios 10 : 12 : 15, which is called a minor chord.

If the ratios of the frequencies of adjacent notes be now written

we haveCDEFGABc'
9/8 10/9 I 6/ I 5 9/8 10/9 9/8 16/15

172



MEAN TEMPERAMENT 173

An ^interval" between two tones is the ratio of their frequen-
/ If the frequencies of three tones are represented by ay b

y

and f, then the three intervals are T,
- and -, the last being

clearly the algebraic product and not the sum of the first two.

Thus the interval C to D is 9/8 or 1.125, fr m ^ to ^> IO/9 or

1. 1 1 1, and the interval C to
, 1.125 X i.m.

There are indicated above three distinct ratios or "intervals"

9/8, 10/9, and J 6/i5, or 1.125, I - III
> and 1.067. The first two

are practically equal and approximately twice the third. If the

first is called a whole tone, the latter is a semitone. If now addi-

tional semitones be inserted between C and D, D and Ey
F and

G, G and A^ and A and 5, there are, as a result, 12 intervals in

the octave. But with the above ratios these twelve intervals

could not be all equal. Hence one could not pick out the tones

that would produce the same scale if he began on D as a keynote.
As an example, interval D to is 10/9 whereas C to D is 9/8)

Similar obstacles would arise throughout in attempting to have

the same scale on D as a "tonic." One recourse would be to

introduce a sufficient number of tones in the scale to make it

possible to start on any note as the tonic. But this is not prac-

tical. Consider the impossibility of applying it to the piano forte.

It is evident that a sacrifice of harmony must be made for con-

venience in execution. The modification in the tones necessary

is called temperament. At least four suggestions as to tempera-
ment have been made, but only one has been retained. It is

called the mean temperament.

14.2. Mean Temperament. The mean temperament assumes

twelve fixed intervals. If the scale is to be entirely independent
of the tonic, then the twelve intervals must be exactly alike. In

order for this to be true, each one of these intervals must be 1 .059

instead of the 1.067 given above. The reason for this is that

i X 1.059 X 1.059 (repeated, occurring twelve times) equals

2.0.* The intervals between C and the other notes of the scale

* This is the significance of what is meant by the twelfth root of 2.0* A semi-

tone interval multiplied 12 times (which means 12 such intervals) equals 2.0 or the

octave.
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are shown for the "natural
"
and the "tempered" scales as follows:

On the tempered scale C# would be 1.059 an^ would be the same

as Db. By placing the semitones, 1.059, in between C and D,

D and ,
F and G, G and A

y
A and 5, we have twelve semitones

in the octave and any one of them may be used as the tonic. In

the actual tuning of a piano care is not taken to secure this equal

temperament, but it is approximated. These introduced semi-

tones would have the following intervals with the tonic:

C# and Db i.ooo X 1.059

D# and b 1.122 X 1.059

F# and Gb 1.325 X 1.059

G# and A}> 1.498 X 1.059

A% and b 1.682 X 1.059

The difference between the natural and the tempered scale is

slight and scarcely noticeable if the tones are played in succession.

But in chords, it is said that the difference is very noticeable (see

Section 14.6).

14.3. Frequency. There is not universal agreement as to the

frequency of a given note. The following can be found men-

tioned in various works in acoustics:

STANDARD FREQUENCIES FOR A
French 435

Stuttgart 440

Concert Pitch 460

International 435

American Concert 461 .6

Boston Symphony Orchestra 435

According to White *
all piano manufacturers of the United

*
White, Science, 72, No. 1864, p. 295 (1930).
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States are using an A of 440 vibrations. With A 440, middle C
becomes 261.6 on an equally tempered scale.

14.4. Nomenclature. There are various ways of indicating
the octave in which a given note is found. Two examples follow:

C_i to 5_i; C to 5
; Ci to JBi; C2 to 52 ;

C3 to 5 3 ; etc., wherein
"
middle

" C is C3 . This is used by D. C. Miller in the work so

extensively quoted in this text.

C__a to 5_2 ; C_i to J5_j; C to 5; c to b\ c\ to b\\ c* to 2 ; c* to 8 ;

etc., wherein c\ is middle C. This is used in Germany. The
French use as C's, C//, /, uti y

#/2) w/3 , etc., where /a is middle C.

Table VIII

Musical Intervals



I4-S- Musical Intervals. The accompanying table VIII gives

the musical intervals in a comparative form. This table is taken

from the preliminary report on acoustic terminology by the stand-

ardization committee of the Acoustical Society of America.

It is to be noted that in the last columns is evidence of the

introduction into the literature of the term "millioctave," which

is one thousandth of the interval of the octave.

14.6. Production of Music in the Natural Scale. Singers and

players of instruments whose pitch can be regulated by breath or

touch, find the tempered scale less aesthetically satisfying than

what they term the "pure" or "natural" scale, and consequently
endeavor to perform in the latter. Certain choruses in the Ro-

man and Greek churches do actually use or approximate the

standards of pitch expounded by Pythagoras, and practice with-

out instrumental accompaniment in order to form and maintain

the habit of thinking in terms of this pitch standard. However,
most performers who talk glibly of the "pure" scale actually in-

crease major and augmented intervals and diminish minor and

diminished intervals, as compared with the tempered scale,

though, in the Pythagorean scale, the major third for instance,

is not greater, but less, than the tempered interval; while these

alterations are thus away from, not toward, the natural scale,

they are aesthetically eminently justified, since in our contem-

porary music the contrast between major and minor, and the

"tendency" of certain tones to progress to certain others because

of our habit of thinking harmonically as well as melodically, are

of relatively great psychological importance. To distinguish this

practice of emphasizing "tendency" from a true attempt to ap-

proximate the scale of nature, I suggest that performers should

speak of an "artistic" or "harmonic" scale, rather than make an

inaccurate use of the terms "pure" scale and "natural" scale.*

QUESTIONS
1. If the semitone B to C is 1.067, wnT not ta^e this as a standard?
2. What interval is the twelfth root of 2 and why?
3. If the interval of a whole tone is 1.122, what is the interval of

a semitone and why?
* This paragraph has been kindly prepared by Doctor P. G. Clapp, Director

and Professor of Music at the University of Iowa. To him the author's thanks

are due.



CHAPTER XV

MUSICAL INSTRUMENTS, THE VOICE AND OTHER
SOUND SOURCES

15.1. Development of Musical Instruments. Musical in-

struments have been developed through experiment. Their use

has preceded our full understanding of the physics of their opera-
tion. But with our increased knowledge of acoustics and of psy-

chology, it is probable that the physicist will have greater influ-

ence in the development of musical instruments in the future than

he has had in the past. That improvement can be made both

by modifications of present instruments and the additions of

others, there can be no doubt. The purpose of this chapter, in

harmony with the remainder of the text, is not a detailed descrip-

tion of musical instruments, nor of the underlying theory. Its

function is to emphasize physical principles so that the student

may have his understanding increased and interest aroused.

At the present time there are excellent treatises *
giving dis-

cussions that are more thorough than are here possible.

15.2. Production of Sound, General. The resonance experi-

ment with a fork placed over ajar, discussed in Chapter V, showed

that the flow of energy from the fork was increased by the pres-

ence of the jar. The fork was closely coupled with the air column

in the jar so that the latter could influence the former.

This is representative of the method of affecting the flow of

energy from the source by resonance. Another method is to in-

crease the vibrating surface exposed to the air. This may be

illustrated by pressing a vibrating fork on a table top. The table

becomes a sounding board, and can successfully convey to the air

*
Barton, "Text-book on Sound," Macmillan and Co., 1922, gives both the

theoretical and practical aspects. Richardson, "Acoustics of Orchestral Instru-

ments and of the Organ," Oxford University Press, 1929, gives a non-mathematical

and yet theoretical account.
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more acoustic energy than could the fork directly. These are

the two general methods used in musical instruments and in sound

sources in general.

Returning to the fork placed at the opening of the resonating

jar in Section 6.5, it is to be remembered that the fork and the air

column each has its own frequency, and that the intensity of the

acoustic output, although greatest when these two frequencies

are alike, yet is noticeably large when the two frequencies are not

exactly the same. An investigation of the situation shows that

the resonating air column affects the frequency of the fork rather

than vice versa. The nature of the change in frequency is curi-

ous. If the level of the water in the jar is raised, so that the

natural frequency of the jar is gradually increased in the direction

of equality to the natural frequency of the fork, the effect is

opposite to what we would anticipate without resort to mathe-

matical analysis. The effect is not to change the fork frequency
in the direction of equality, but in the opposite sense. Then,
with gradual increase in frequency of the air column, the fork

frequency continues to shift slowly to higher frequencies. But

when the natural frequency of the air column becomes equal to

the natural frequency of the fork, there is a sudden jump in actual

frequency of the fork back to its natural value with greatly en-

hanced intensity of resonance. The entire variation of frequency
of the fork in a certain experiment performed as described was

less than one-hundredth of one per cent. The effect is therefore

not large. The experiment is cited to show that a vibrating air

column can affect the frequency of such a rigid body as a tuning

fork. This effect of one of the coupled vibrating systems upon
the other, and the increase of flow of energy from the source at

like frequencies, are the two most prominent effects to bear in

mind. There are cases when the source is coupled to more than

one vibrating system. This will be described at the appropriate

place.

There is another feature that should be mentioned in stating

a general view. One is concerned not only with the intensity of

sound on the interior of an instrument, but with that on the ex-
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terior. In wind instruments with open orifices the transfer is

very complicated.

15.3. Production of Sound by Strings. Stringed instruments

are actuated by impact, plucking and bowing. In the first two

cases, the string is forced into a strained position and then allowed

to vibrate freely. Since the string is capable of vibrating in any
of its natural frequencies, which are integral multiples of the

fundamental one, the relative amplitudes which the various com-

ponents have will depend upon the original displaced position of

the string. For example, assume that by a carefully constructed

constraint it is easily possible to displace and hold the string

throughout its entire length in that position corresponding to a

displacement for the fundamental frequency alone. From this

arbitrary position the string is suddenly released. Clearly it

would then vibrate freely with only the fundamental frequency

involved. Similarly, the string might be displaced to a position

corresponding to the actual position of the string when possessing

the frequencies of the fundamental and the first overtone. Then

the subsequent vibrations would contain only these two frequen-

cies.

When a string is plucked or is struck by a hammer, the dis-

placement produced is much more complicated, and, moreover,

the two cases would not be alike. In the case of plucking, the

entire string is set free from practically a rest position. On the

other hand, a blow of the hammer is very rapid and is actually

completed before the string has had time everywhere to move into

a displaced position. These two different starting conditions of

the string will result in a difference of the values of the amplitudes
of the component tones in each case.

For a similar reason, one can understand why the size and

softness of a hammer would cause a difference in the quality of

tone from a string. The hard hammer would give a sharper bend

to the string. One associates sharp bends with short distances

between nodes and hence with higher frequencies, and a careful

study shows that such is really the case. The hard hammer
accentuates high frequencies.
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From the above discussion, it is rather clear that the quality

of tone can be modified by the speed of plucking (which may not

be a practical consideration), the nature of the hammer, the

quickness of its blow, and the position along the string of either

the plucking or the impact. But it happens that in the hammer

instrument, the piano, the actuating key does not determine the

quickness of the blow. After the hammer is in motion, the key
no longer has any control. Give the hammer a certain energy or

a certain velocity and it will always strike in the same manner.

Thus the possibilities of "touch" on the piano are seriously lim-

ited, much more so than is commonly believed.

The quality of a bowed string can be modified at will much
more readily. Bowing presents a complicated and an interesting

phenomenon. The bow pulls the string to one side, the force

arising from what is called "static friction." It is well known

that such a force is greater than that existing when slippage once

begins. So when the bow pulls the string to one side, the string

finally slips under the bow. When the slip once begins it con-

tinues until the string has reached a displacement in the opposite

direction. Then the string again follows the bow's motion and

repeats its former action. Work is done by the bow on the string

because the force acting in the direction of the bowing is very
much greater in one half of the vibration than in the other half.

From this description it is evident that the width of the bow, the

place of bowing along the string, the pressure on the bow and the

speed of bowing will all enter into the production of the tone

quality. The possibility of "touch" in such an instrument is

therefore relatively large.

15.4. Production of Sound by Reeds. In the clarinet there

is but one reed, and in the oboe and bassoon there are two. The

reeds are set into motion by blowing. The velocity of the air

blast lowers the pressure between the reed and its base, or be-

tween the two reeds, and the impact of the air behind also con-

spires to cause the closing of the reed or reeds. The pressure not

being sufficient to keep the reed or reeds in a closed position, the
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original position is resumed and a continuous vibration ensues.

In this vibration the reeds, acting alone, have a natural frequency,
or rather a group of natural frequencies, with a quality of sound

which is not very pleasing. But the reeds are usually, as in the

clarinet and oboe, coupled with an air column. With such an air

column and a thin reed, the former is the chief factor in deter-

mining the frequency of the coupled system. It is to be borne in

mind that reeds are used in organ pipes as well as in orchestral

instruments.

But there is another factor, the importance of which is not

definitely known. The resonating cavity in the mouth of the

blower is also coupled to the vibrator. It is taught by some

authorities that the blowing of an instrument is made easier if

one will put his mouth in the position of humming the note de-

sired. Until quantitative data are obtained, a positive statement

concerning the importance of this second coupling cannot be

made.

What has been stated about the reeds would also apply to the

use of the lips with brass instruments, except in the latter case

there is a large opportunity for the alteration of the vibrator.

The lips may be stretched more or less tightly and they may be

thrust forward. The shape of the mouthpiece in the case of

brass instruments and its influence on the quality deserves addi-

tional mention in a later section.

15.5. Production of Sound by an Air Blast. The most com-

mon examples of the production of sound by an air blast are the

blowing of the flute and of an organ pipe. If a sheet of air strikes

a sharp edge a tone is produced which depends upon the shape of

the edge, the velocity of the blast, and the distance from the blast

opening to the edge. This tone is caused by the production of

eddies first on one side of the sharp edge and then on the other.

When such a source is coupled with a resonating air column, the

frequency of the eddies or vortices is controlled thereby. The

details are beyond the scope of this text, but enough has been

said to remind the reader that here again one has two vibrating
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systems, with one controlling the other. The natural frequency

of this "edge tone" is raised by an increase in air velocity and is

lowered by an increase in distance of the edge from the air blast

opening. The production of the edge tone can therefore be con-

trolled, by the velocity of the air blast and the distance of the

blast opening to the edge against which the blast impinges. This

is shown in practice in the use of the flute and in the manufacture

of organ pipes.

There is one application of the air-blast in which its importance
is not quantitatively known. In most brass wind instruments

the mouthpiece is cupped so that there is an edge at the opening
of the tube of the instrument into the cup. The blast of air from

the lips must impinge upon this edge. There is here a secondary

source of sound produced. This may be the explanation, at least

in part, of the effect of the shape of the mouthpiece upon the

tone produced in such an instrument.

15.6. Harmonics and Overtones. In dealing with the pro-

duction of sound, one must have clearly in mind the possibility

of regarding every sustained sound as composed of various fre-

quencies, each of which is strictly a simple harmonic vibration.

Any vibration which repeats itself can be analyzed into its component

simple harmonic frequencies. In this analysis the frequencies of

the components may include those whose relative frequencies are

I, 2, 3, 4, 5, 6, etc. But these frequencies may not all be present.

The amplitudes of some of them may be zero. If the one repre-

sented above as
"

I
"

is present, all of the others present are in

consonance with it, for each represents an integral number of

octaves. Such overtones are called "harmonics." But if the

fundamental, or lowest tone present, is represented by 2, then,

while 4, 6, 8, etc., which are octaves of the first, may be called

harmonics, yet 3, 5, 7, etc., are not octaves and to them is given

the more general term "overtones." Thus the overtones may
in this narrow sense be harmonic and they may not be. Also the

overtones may be dissonant with the fundamental. For assume

the lowest tone present is that represented by 8. Then overtone
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9 would be dissonant with it. Every musical sound, then, has

a fundamental, or the lowest tone, but the overtones need not be

harmonics. This is true, for example, of most wind brass instru-

ments. In them the tone represented in the above by
"

I
"

is not

played.

15.7. Peculiarity of Action of Several Instruments. In the

violin, the vibration of the string is practically parallel to the body
since the displacements are along the direction of the bow. This

vibration causes a motion of the bridge in the same direction.

Under the bridge, and more nearly under one foot of the bridge

than the other, there is a supporting sound-post. About this side

which is rather stable, the bridge rolls back and forth with the

vibration of the string. There is thus conveyed to the body of

the violin, and indeed to both the belly and back of the instru-

ment, a vibration perpendicular to both. The sound from the

instrument thus depends upon the natural frequencies of the

violin itself and the air volume within. But the radiation of

energy from the instrument is largely enhanced by the sounding-

board effect, or the increase of exposure to the air of the vibrating

surface. Thus the vibrating string is coupled with resonating

bodies and also with an increased area which is forced to vibrate.

That the natural frequencies of the violin are of importance is

shown by the difference in instruments. H. Backhaus * has ex-

perimented with famous violins and has shown that one of their

chief characteristics is emphasis upon the high overtones, or upon
the actual number of overtones that have a measurable ampli-

tude. A great deal may be said about the tone characteristics

of violins and their construction, but this would take the reader

too far afield. Attention may be called, however, to the fact that

Norway spruce, which is frequently used in violin construction,

has a great elasticity and small mass per unit volume. This gives

a high velocity (15,000 feet per second) of sound and causes the

vibration to spread rapidly over the violin. Of course the veloc-

ity across the grain is, unfortunately, much less.

* Die Naturwissenschaften, 18, 1929.
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In the piano we find one bridge on the sounding board and one

on the frame which carries the tension in the wires. The vibra-

tions are conveyed to the sounding board by the former. The

hammers are made to strike at one-seventh the length from one

end. This location would help to prevent the formation of the

seventh harmonic which is somewhat dissonant, but it is thought

by Richardson (loc. cit.) that this is not the most important effect.

In his opinion, if the string is struck at one-seventh from the end,

its fundamental amplitude has the maximum value and conse-

quently less of the energy can go into the high harmonics. Hence

the excitation of natural vibrations of the sounding board are re-

duced to a minimum.

The clarinet is a cylindrical tube terminating in a bell. It is

usually stated that the fundamental and harmonics have the rela-

tive frequencies of i, 3, 5, 7, etc., as is the case with a cylinder

closed at one end, for the mouthpiece acts as a closed end, though
it is the source of sound. But it is possible that the mouthpiece

may be made to act as an open end introducing noticeable even

harmonics as well. There is a vent hole in the instrument near

the beak which is opened in order to play the higher notes in its

range. The function of this small hole is not very clear. It is

claimed that it helps in the formation of an antinode near the

beak end, and thus encourages the formation of high tones. But

such an orifice would also be favorable to the transmission of the

higher frequencies, as pointed out in Chapter XIII, and would

thus have the tendency actually found in the use of the instrument.

The oboe has a conical tube, with a
"
closed

"
end at the reeds.

Its natural frequencies include therefore all of the harmonic series.

Many brass instruments have a hyperbolical or an exponential

shape. In these the tube widens out slowly at first and then very

rapidly at the bell. The harmonics are the same as those of a

conical tube. The bell on these instruments, as on the clarinet

and oboe, enables the energy from the interior to escape more

rapidly than otherwise. But the energy may escape from the

opened holes also, as described in the following Section 15.8.

The organ pipe must be considered as open at the air-blast
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end. Thus the harmonics and fundamental have the variation

of i, 3, 5, 7, etc., for a pipe closed at the other end, and all the

harmonics for an open end. In measuring the acoustic length,

or the length referred to in Section 6.8, of an organ flue pipe, a

correction must be made for the open end, and also for the mouth

or air-blast end. The former correction has been mentioned in

Section 6.9. The latter has recently been studied by Bate.* He
found that the correction was proportional to the area of the pipe,

inversely proportional to the area of the mouth, and independent
of the frequency over the octave studied.

15.8. Emission of Sound from the Clarinet. It is the purpose
of this section to emphasize the very complicated action within

an instrument such as a clarinet and the effect upon its emitted

sound. A later section discusses the frequencies produced by

opening the holes. But up to the present time no one has studied

in detail the emission of sound from the instrument. Not only

does the opening of the holes modify the resonance inside, but a

pipe having open holes will inevitably have a filtering action in-

side, as discussed in the previous chapter. The sound in part

issues from the opened holes as well as from the bell and with

some notes the former is of high importance. In the absence of

experimental facts, one can surmise that the quality of these two

sounds would not be the same. The entire action, as one readily

sees, is very complicated, for one has to deal at least with reso-

nance, the filtering action of one or more orifices, waves travelling

in both directions along the tube, radiation from the orifices and

the affect of return waves upon the source.

15.9. Production of the Voice. The vocal cords or ligaments

require a blast of air from the lungs to pass through the slit be-

tween them.f They act in a manner similar to two non-rigid

reeds. The frequencies are determined by tension, length and

distribution of mass of the cords. The resonances of the larynx,

*
Bate, Philosophical Magazine, 10, 65, p. 617, 1930.

t R. L. Wegel, JL Atous. Soc. of Am. y i, 3, p. i, 1930, discusses the "Theory of

the Vibration of the Larynx." This paper is of interest particularly to physicists.
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pharynx, mouth and nose control the harmonics that are empha-
sized and give the quality to the voice. As earlier stated, the

differences in sustained vowels are caused by resonance. But it is

also evident that resonance cannot fully control quality; for sus-

tained tones, only the vibrations present in the vocal cords can

exist in the tone produced. For the impulsive sounds which also

proceed from the vocal cords, the quality is produced by the exci-

tation of all the natural frequencies of the resonating chambers.

This action is similar to the effect of sending a puff of air across

the opening of a bottle. The natural frequencies die out rapidly.

So, in speech and music both types of action are prominent.

15.10. Frequency of Pipes. It has been well known that the

frequency of a pipe, a flute for example, with one hole open, de-

pends upon the resonating action of the column of air extending

from the opened hole to the source of sound. In the case of the

flute the source is the hole across which the player blows. If the

frequencies are computed by assuming that the effect of the

opened hole is to create a pipe with an open end at that point,

then, since the blown end is also effectively an open end, the

wave-length is twice the distance from the source to the open
hole. This is only approximately true, and for the reason that

the opened hole is not equivalent to an open end.

If two holes on the instrument are open, then the resonance

frequency is modified. An examination of the theory
* shows

that now the frequency can be calculated by assuming the pipe

to consist of two resonant systems consisting of a pipe from the

source to the first hole, and a pipe from the first hole to the second.

In fact, it is possible by making approximations in the theory to

compute the frequency for the case of any number of open holes.

Yet these approximations do not permit of manufacturing designs

based solely on computations. Even now the location of holes

depends upon experiment.

15.11. Aeolian Harp. When wind blows over stretched wires

sounds are produced which are not due to the vibrations of the

*
Irons, Phil. Mag^ 10, p. 16 (1930).
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wires but to the action of the air itself. When the air passes an

obstacle, vortices or whirls may be established on the leeward

side. It is the instability of these vortices that leads to oscilla-

tions and finally to sound production. The predominant tone

has been found by recent observations * to have the following

frequency,

- 0.00
J,

wherein v is the velocity of the wind and d the diameter of the

wire.

Of course if a natural frequency of the string corresponds to

that given in the above formula, the tone is reinforced.

The noise of the wind at corners, in the trees, at all obstacles

is caused by the instability of vortices and consequently the pre-

dominant term depends upon the shape of the obstacle and the

velocity of the wind. The "howling" of the wind is the char-

acteristic sliding of the tone in pitch which is precisely what would

be caused by continuously varying wind velocities.

15.12. Singing Flames. If a small flame is introduced into

an open pipe, it may excite the natural vibration of the pipe.

Its position must be between the open end and a node, or about

half way to the mid-point of the pipe. When the frequency of

the pipe is excited the height of the flame oscillates simultane-

ously with changing pressure, the pressure in the gas and in the

air being in opposite phases. Heat is transferred to the air at

each condensation.!

15.13. Singing Tubes. Recently Professor C. T. Knipp has

made an apparatus which exhibits the phenomenon in a conveni-

ent manner. A heated glass bulb is the source of energy and the

tone is the natural vibration of the air in the chamber volume

to which it is attached. One can tune this volume and thus secure

a fairly constant source of sound.

*
Richardson, Physical Society Proceedings, 36, 153, 1924, and 37, 178, 1915.

f See Barton, he. cit.> article 265, et scq.



1 88 MUSICAL INSTRUMENTS

15.14. Sensitive Flames and Jets. When a fluid jet issues

from an orifice into quiet air, the pressure behind the jet may
become so excessive as to cause an unsteady state in the jet. If,

however, this pressure is not quite attained, a sound wave of

certain frequencies may produce this unsteadiness. In the case

of a flame, a flare results. A sensitive flame responds to sound

waves because of the displacements of the air and not because of

pressure changes. The action occurs near the orifice.

15.15. Tones from Membranes. In acoustical apparatus
membranes and diaphragms are in common use. Some of the best

telephone transmitters for wireless broadcasting use a stretched

membrane (or very thin flexible plate) and a vibrating plate (not

stretched, but whose stiffness is caused by its thickness) is uni-

versally used in telephone receivers. To illustrate the nature of

the natural vibrations of such pieces of apparatus, a brief descrip-

tion will be given of the modes of vibration of an ideal circular

membrane. The assumptions are that the membrane is stretched

uniformly in all directions with a certain tension that remains

unaltered during the vibrations considered, and that the mem-
brane is perfectly flexible and infinitely thin. A membrane is

"perfectly flexible" if there is no force resisting bf nding. The

membrane, under the assumptions, is fastened rigidly at its cir-

cular boundary. Its fundamental vibration is with the circum-

ference as a node and a maximum displacement at the center of

the circle. Inasmuch as our interest is in the ratios of the funda-

mental and overtones, it is satisfactory to represent all frequen-

cies as multiples of the fundamental. Thus the frequency of the

fundamental is regarded as unity. In Fig. 15.1
* are shown the

nodal lines and the frequencies of the fundamental and eleven

overtones. The first number under each figure is the frequency.

The second and third numbers are the radii of the nodal circles

as compared with the radius of the membrane. In each figure

the nodal lines are those belonging to that overtone only. The

chief points of interest are first, that the overtones are not mul-

* This figure is according to Rayleigh,
"
Sound," p. 206.



TONES FROM MEMBRANES 189

tiples of the fundamental and second, that the actual vibration

of a membrane, when involving all these tones, is very complex.
The vibrations of plates are not the same as those of mem-

branes because the stiffness in the former has a different origin;

1.000 1.594 2.136

3.652 4.154

FIG. 15.1

namely, the rigidity of the plate and not the tension in it. Yet

the general description of the nodal system as consisting of con-

centric circles and symmetrically distributed diameters remains

correct. In the ordinary telephone transmitter diaphragm the

fundamental has a frequency in the neighborhood of 800 cycles.

A force having this frequency would set the diaphragm into a

relatively large vibration. Reference to the discussion of the dis-
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tribution of energy in speech will show that the maximum energy
does not occur at 800. Experience has shown that this frequency

gives the most satisfactory results when all the practical consid-

erations of design are met.

Reference should be made to the sound of a drum. Its pitch

is difficult to get, except with the kettle drum, where the pitch

is modified at will by altering the tension. The quality of the

sound of the drum is caused by the fact that its overtones are

somewhat dissonant with each other.

15.16. Sound Waves in a Solid. If a small rod is stretched or

compressed longitudinally, there is an accompanying contraction

or expansion laterally. There is therefore a change of shape of

the material as well as a longitudinal dilation or compression.

But if the solid is extended in all directions, this change of shape

laterally is not free to occur and the velocity of the sound wave

is not the same. The velocity of a longitudinal wave in an ex-

tended solid can be expressed by an equation similar to (1.2) of

Chapter I, but E is then not a single constant but the sum of two.

One of these elastic constants deals with volume elasticity and

the other with shape elasticity.

But if instead of using a longitudinal force at the end of a rod,

causing longitudinal waves, we had used a force twisting the rod

first one way and then the other, we would have caused a wave

of twist or a torsional wave in the rod. Thus it is possible to

have in an extended solid a second kind of wave. Its velocity

is expressed by an equation similar to that used for the longitu-

dinal wave, , depending upon the same two constants as before,

but not in the same manner. The velocities of the two waves are

not equal. Hence if we had spherical waves of both types start-

ing from a point, one wave would travel faster than the other.

In fact, the elastic constants are such that in most materials the

velocity of the longitudinal wave is roughly twice that of the tor-

sional wave.

Then it is possible also to produce transverse waves in a solid.

Rest a thin horizontal bar on two edges placed approximately
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0.224 f the length from each end. It will vibrate transversely

with these edges as nodes, and the ends of the bar as loops. It

will give a relatively pure tone because the natural frequencies

of the rod are widely separated and, moreover, the fixed position

of the nodes makes possible only a few of these. In fact, experi-

ment and theory both show that the first overtone that would

have a node at the same point has 13.3 times the fundamental

frequency, or between three and four octaves above the funda-

mental. The position of this node is approximately at 0.226.

A tuning fork is a rod bent into a U shape, but with the ad-

dition of a mass of metal at the bend. Also the nodes of the

bar approach each other as the rod is bent. The first overtone

of a bar bent into a U shape is about six times the fundamental

frequency. The wide separation of the fundamental from the

first overtone and the relative faintness of latter are the reasons

for the purity of the tone of the tuning fork.

15.17. Vibration of Bells. A bell may be regarded as a vi-

brating cylinder. Consider Fig. 15.2 showing an exaggerated

cross-section perpendicular to the axis of the cylinder. Assume

that the bell experiences its fundamental vibration from one

approximate ellipse to another

with perpendicular axes. If the

reader will draw the circle and

the two ellipses he will see that

the four "nodal" points on the

circumference are not stationary.

The points of intersection of one

ellipse and circle are not the

same as the crossing points of

the other ellipse and circle. If

there were stationary nodes we might assume that transverse (or

torsional) waves were the only ones existing in the bell. But,

under the circumstances, both longitudinal and transverse waves

exist. It can be shown, as may be here surmised, that the over-

tones are not harmonics. (See Section 15.18.)

FIG. 15.2
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The physical requisites of a good bell are that the material

be homogeneous, relatively free from viscosity and have an elastic

limit * that will not be exceeded in ordinary use. The funda-

mental tone of the bell is not prominent. In fact, it does not

determine the pitch of the bell. The pitch of the strike note is

an octave below the fifth partial or the fourth overtone, and in a

bell not intrinsically tuned (see Section 15.18), does not corre-

spond to any actual vibration of the bell. The cause of this judg-
ment as to the pitch of a bell is not understood.!

15.18. Carillons and Chimes. There seems to be some loose-

ness of definition in the literature concerning the terms "carillon"

and "chime." Both refer to a set of bells tuned to a musical

scale, but in the carillon all the semitones appear. It is obvious

that such bells must be carefully tuned to pitch. This is done

by casting each bell for a slightly higher tone than desired and

then by removing some of the casting by cutting and abrasion

with the aid of machinery. Bell founders have for many years

considered the seven desirable tones of a bell to have the following

frequency ratios, I : 2 : 2.4 : 3 : 4 : 5 : 6. But this result cannot

be secured except by the most skillful application of the art. In-

deed, at the present time, a bell ranks with the best if only the

fundamental and the first four overtones with the ratios stated

are obtained. Even this requires machining in a manner that is

regarded as a trade secret.

But bells with tuned overtones are unusual and occur only

in the most expensive carillons. An illustration of what is con-

sidered a good bell will now be cited. Dr. A. T. Jones has care-

fully measured the frequencies of the largest bell of the Dorothea

Carlile Chime at Smith College t and has found that the first

* An clastic body when stretched will return to its original position when the

stretching force is removed, provided a certain limiting tension is not exceeded.

This limiting tension per unit area is called the elastic limit.

t See article by A. T. Jones, Physical Review, XVI, 4, 1920, p. 247, and Journal
Acoustical Society of America^ I, p. 373, 1930.

\ A. T. Jones, JL Acous. Soc. Am., I, p. 373, 1930.
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seven partials
* have the ratios i.oo : 1.65 : 2.10 : 3.00 : 3.54

: 4.97 : 5.33, which are very different from the ratios given above

for a bell with tuned overtones. It is surprising that a bell like

the one described could be pleasing to the ear. But it must be

remembered that harmonics of the seven tones are not present,

and consequently the dissonance that would occur in sounding
the same tones on a string instrument is not observed. The bells

with tuned overtones are, however, a distinct improvement and

will be increasingly used.

15.19. Acoustic Power Output. Dr. P. E. Sabine has meas-

ured the acoustical power output of certain musical instruments.

A violincello in itsfundamental, when bowed strongly, varied from

loo microwatts (or 1,000 ergs per second) at 128 cycles to one

microwatt at 650 cycles. A good violin gave a fairly uniform

output of 60 microwatts for frequencies from 192 cycles to 1,300

cycles. Open diapason organ pipes gave an output of approxi-

mately 1,000 microwatts. All the values refer to the fundamental

tone and not to the entire output.

15.20. Modern Loud Speakers. This text has shown that

with closely coupled systems one may get much more energy from

the source of vibration with than without the condition of reso-

nance. Moreover, it has been recognized that any mechanism

having elasticity and inertia may be likened to a spring and a

weight suspended therefrom. There is a natural period of vibra-

tion. Modern loud speakers frequently have a cone-shaped sur-

face, actuated electrically at its vertex by the complex vibrations

which eventually are to be given to the air. The vibration at

the vertex cannot convey sufficient sound directly to the air.

The cone is employed because of its large exposure to the air.

It is a sounding board. But being light and far from rigid, the

cone has natural frequencies of its own. Thus in actual use, any
of the cone's natural frequencies occurring in the original sound

at the transmitting station will be overemphasized by the loud

*TKe term "partial" is used to include both the fundamental (first partial)

and the overtones.
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speaker. Obviously the cone could be made of very rigid mate-

rial, so rigid that its natural frequencies would be higher than any
used at the transmitting station. But then it would be too mas-

sive to actuate. One of the difficulties is to obtain a cone light

enough, large enough and yet without introducing a distortion of

the complex sound. Another important feature of interest is the

use of a plane, rim, or surface surrounding the base of the cone.

It may be called a baffle plate. It has three functions. It sepa-

rates the inside of the cone from the outside, thus preventing the

slippage of air from the outside of the cone to the inside. Such

a slippage could decrease the pressure caused by the vibration

of the cone and hence the intensity of the sound wave. The

baffle plate also reflects the sound. In Section 5.5 it is shown

that by this reflection a greater amount of sound issues from the

vibrator. The third function is that of shutting out the vibration

from the other side of the cone. This is desirable for one can

readily see that the vibrations on the two sides are opposite in

pressure phase and will produce interference.

Horns, usually with diameters increasing much more rapidly

than the length, are used in loud speakers in theaters and public

address systems. They are coupled systems in which the horn

and the moving diaphragm each has its own natural frequencies.

The endeavor is made to reduce these resonance effects to a mini-

mum. A practical discussion of horn design is given by Hanna.*

He favors a horn of the "exponential" type, for theory points

approximately to this shape. An exponential horn doubles its

area at equal intervals along its length.

QUESTIONS
1. What mechanical conditions must be met if a musical instru-

ment is to give great intensity of sound?
2. In what ways is the transfer of energy from the initial vibrating

portion of a musical instrument to the atmosphere accomplished?

3. Under what conditions are two vibrating systems "coupled?"
Give an illustration.

4. Give an illustration where three vibrating systems are coupled.

*
Hanna, Journal Acoustical Society of America, II, a, p. 150, 1930.
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5. By what means (ideal and not practical) can a string be set

into vibration of the fundamental alone?

6. In what way does the nature of the piano hammer affect the

quality of tone?

7. While one holds a piano key down, what is the position of the

hammer, of the damper?
8. Discuss the possibilities of the qualities of a tone in a brass

instrument and the ease of blowing being altered by the adjustment
of the mouth.

9. How do you know that the vibration communicated to the

body of a violin is not one caused by the changes in tension of the

+?
:

ng during its vibration?

10. What is the reason for using, in the violin, a wood having a

high sound velocity for transverse displacements?
11. Physically how can tone quality be modified?

12. Upon what does the quality of the voice depend?
13. State the difference in action of the sustained and the impul-

sive sounds of the voice.

14. Explain the howling of the wind.
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